Imaging data analysis using non-negative matrix factorization

被引:8
|
作者
Aonishi, Toru [1 ,2 ,3 ]
Maruyama, Ryoichi [2 ]
Ito, Tsubasa [2 ,3 ]
Miyakawa, Hiroyoshi [5 ]
Murayama, Masanori [3 ]
Ota, Keisuke [3 ,4 ]
机构
[1] Tokyo Inst Technol, Sch Comp, Kanagawa, Kanagawa, Japan
[2] Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Kanagawa, Kanagawa, Japan
[3] RIKEN Ctr Brain Sci, Saitama, Japan
[4] Univ Tokyo, Grad Sch Med, Tokyo, Japan
[5] Tokyo Univ Pharm & Life Sci, Sch Life Sci, Tokyo, Japan
基金
日本科学技术振兴机构;
关键词
Multicellular calcium imaging; Wide field-of-view microscope; Region of interest; Cell detection; Machine learning;
D O I
10.1016/j.neures.2021.12.001
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The rapid progress of imaging devices such as two-photon microscopes has made it possible to measure the activity of thousands to tens of thousands of cells at single-cell resolution in a wide field of view (FOV) data. However, it is not possible to manually identify thousands of cells in such wide FOV data. Several research groups have developed machine learning methods for automatically detecting cells from wide FOV data. Many of the recently proposed methods using dynamic activity information rather than static morphological information are based on non-negative matrix factorization (NMF). In this review, we outline cell-detection methods related to NMF. For the purpose of raising issues on NMF cell detection, we introduce our current development of a nonNMF method that is capable of detecting about 17,000 cells in ultra-wide FOV data.
引用
收藏
页码:51 / 56
页数:6
相关论文
共 50 条
  • [1] Sleep State Analysis Using Calcium Imaging Data by Non-negative Matrix Factorization
    Nagayama, Mizuo
    Aritake, Toshimitsu
    Hino, Hideitsu
    Kanda, Takeshi
    Miyazaki, Takehiro
    Yanagisawa, Masashi
    Akaho, Shotaro
    Murata, Noboru
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: THEORETICAL NEURAL COMPUTATION, PT I, 2019, 11727 : 102 - 113
  • [2] Detecting cells using non-negative matrix factorization on calcium imaging data
    Maruyama, Ryuichi
    Maeda, Kazuma
    Moroda, Hajime
    Kato, Ichiro
    Inoue, Masashi
    Miyakawa, Hiroyoshi
    Aonishi, Toru
    [J]. NEURAL NETWORKS, 2014, 55 : 11 - 19
  • [3] Microarray Data Analysis of Yeast Data using Sparse Non-Negative Matrix Factorization
    Passi, Kalpdrum
    Draper, Paul
    Santala, Jillana
    Jain, Chakresh Kumar
    [J]. PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2017, : 1259 - 1264
  • [4] Non-negative Matrix Factorization for Binary Data
    Larsen, Jacob Sogaard
    Clemmensen, Line Katrine Harder
    [J]. 2015 7TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT (IC3K), 2015, : 555 - 563
  • [5] Longitudinal Neuroimaging Analysis Using Non-Negative Matrix Factorization
    Stamile, Claudio
    Cotton, Francois
    Sappey-Marinier, Dominique
    Van Huffel, Sabine
    [J]. 2016 12TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS (SITIS), 2016, : 55 - 61
  • [6] Using non-negative matrix factorization for single-trial analysis of fMRI data
    Lohmann, Gabriele
    Volz, Kirsten G.
    Ullsperger, Markus
    [J]. NEUROIMAGE, 2007, 37 (04) : 1148 - 1160
  • [7] Feature Extraction Approach for Mass Spectrometry Imaging Data Using Non-negative Matrix Factorization
    Xiong Xing-Chuang
    Fang Xiang
    Ouyang Zheng
    Jiang You
    Huang Ze-Jian
    Zhang Yu-Kui
    [J]. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2012, 40 (05) : 663 - 669
  • [8] A framework for intelligent Twitter data analysis with non-negative matrix factorization
    Casalino, Gabriella
    Castiello, Ciro
    Del Buono, Nicoletta
    Mencar, Corrado
    [J]. INTERNATIONAL JOURNAL OF WEB INFORMATION SYSTEMS, 2018, 14 (03) : 334 - 356
  • [9] Unmixing Hyperspectral Skin Data using Non-Negative Matrix Factorization
    Mehmood, Asif
    Clark, Jeffrey
    Sakla, Wesam
    [J]. ACTIVE AND PASSIVE SIGNATURES IV, 2013, 8734
  • [10] Inferential, robust non-negative matrix factorization analysis of microarray data
    Fogel, Paul
    Young, S. Stanley
    Hawkins, Douglas M.
    Ledirac, Nathalie
    [J]. BIOINFORMATICS, 2007, 23 (01) : 44 - 49