Tumor Classification Using Non-negative Matrix Factorization

被引:0
|
作者
Zhang, Ping [2 ]
Zheng, Chun-Hou [1 ,3 ]
Li, Bo [3 ]
Wen, Chang-Gang [1 ]
机构
[1] Qufu Normal Univ, Coll Informat & Commun Technol, Rizhao 276826, Shandong, Peoples R China
[2] Qufu Normal Univ, Inst Automat, Rizhao 276826, Shandong, Peoples R China
[3] Chinese Acad Sci, Inst Intelligent Machines, Intelligent Comp Lab, Hefei 230031, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Gene expression data; Non-negative matrix factorization; SVM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the advent of DNA microarrys, it is now possible to use the microarry data for tumor classification. Yet previous works have not use the non-negative information of gene expression data for classification. In this paper, we propose a new method for tumor classification using gene expression data. In this method, we first extract new features of the gene expression data by virtue of non-negative matrix factorization (NMF) and its extension, i.e. sparse NMF (SNMF) then apply support vector machines (SVM) to classify the tumor samples using the extracted features. To better fit for classification aim, a new SNMF algorithm is also proposed.
引用
收藏
页码:236 / +
页数:3
相关论文
共 50 条
  • [21] Dropout non-negative matrix factorization
    He, Zhicheng
    Liu, Jie
    Liu, Caihua
    Wang, Yuan
    Yin, Airu
    Huang, Yalou
    KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 60 (02) : 781 - 806
  • [22] Uniqueness of non-negative matrix factorization
    Laurberg, Hans
    2007 IEEE/SP 14TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2007, : 44 - 48
  • [23] Stretched non-negative matrix factorization
    Gu, Ran
    Rakita, Yevgeny
    Lan, Ling
    Thatcher, Zach
    Kamm, Gabrielle E.
    O'Nolan, Daniel
    Mcbride, Brennan
    Wustrow, Allison
    Neilson, James R.
    Chapman, Karena W.
    Du, Qiang
    Billinge, Simon J. L.
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [24] Non-negative Matrix Factorization on Manifold
    Cai, Deng
    He, Xiaofei
    Wu, Xiaoyun
    Han, Jiawei
    ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 63 - +
  • [25] Non-negative Matrix Factorization on GPU
    Platos, Jan
    Gajdos, Petr
    Kroemer, Pavel
    Snasel, Vaclav
    NETWORKED DIGITAL TECHNOLOGIES, PT 1, 2010, 87 : 21 - 30
  • [26] On affine non-negative matrix factorization
    Laurberg, Hans
    Hansen, Lars Kai
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PTS 1-3, 2007, : 653 - +
  • [27] Bayesian Non-negative Matrix Factorization
    Schmidt, Mikkel N.
    Winther, Ole
    Hansen, Lars Kai
    INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2009, 5441 : 540 - +
  • [28] Classification of landsat TM image based on non-negative matrix factorization
    Ren, Jiamian
    Yu, Xianchuan
    Hao, Bixin
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 405 - 408
  • [29] Study on Text Classification Algorithm Based on Non-negative Matrix Factorization
    Jing, Yongxia
    Gou, Heping
    Fu, Chuanyi
    Liu, Qiang
    2017 10TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2017, : 484 - 487
  • [30] Gene Expression Data Classification Based on Non-negative Matrix Factorization
    Zheng, Chun-Hou
    Zhang, Ping
    Zhang, Lei
    Liu, Xin-Xin
    Han, Ju
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 194 - +