Tunable transport gap in narrow bilayer graphene nanoribbons

被引:47
|
作者
Yu, Woo Jong [1 ,3 ]
Duan, Xiangfeng [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
[3] Sungkyunkwan Univ, Dept Elect & Elect Engn, Suwon 440746, South Korea
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
HIGH-QUALITY; LARGE-AREA; BAND-GAP; TRANSISTORS; FILMS;
D O I
10.1038/srep01248
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The lack of a bandgap makes bulk graphene unsuitable for room temperature transistors with a sufficient on/off current ratio. Lateral constriction of charge carriers in graphene nanostructures or vertical inversion symmetry breaking in bilayer graphene are two potential strategies to mitigate this challenge, but each alone is insufficient to consistently achieve a large enough on/off ratio (e.g. > 1000) for typical logic applications. Herein we report the combination of lateral carrier constriction and vertical inversion symmetry breaking in bilayer graphene nanoribbons (GNRs) to tune their transport gaps and improve the on/off ratio. Our studies demonstrate that the on/off current ratio of bilayer GNRs can be systematically increased upon applying a vertical electric field, to achieve a largest on/off current ratio over 3000 at room temperature.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Transport gap in suspended bilayer graphene at zero magnetic field
    Veligura, A.
    van Elferen, H. J.
    Tombros, N.
    Maan, J. C.
    Zeitler, U.
    van Wees, B. J.
    PHYSICAL REVIEW B, 2012, 85 (15)
  • [42] Tunable Bandgap in Bilayer Armchair Graphene Nanoribbons: Concurrent Influence of Electric Field and Uniaxial Strain
    Khaliji, Kaveh
    Noei, Maziar
    Tabatabaei, Seyed Mohammad
    Pourfath, Mahdi
    Fathipour, Morteza
    Abdi, Yaser
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (08) : 2464 - 2470
  • [43] A tunable narrow single-mode bandpass filter using graphene nanoribbons for THz applications
    Mohammadi, Ghader
    Orouji, Ali Asghar
    Danaie, Mohammad
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [44] Wave-Packet Dynamics Study of the Transport Characteristics of Perforated Bilayer Graphene Nanoribbons
    Demin, V. A.
    Kvashnin, D. G.
    Vancso, P.
    Mark, G. I.
    Chernozatonskii, L. A.
    JETP LETTERS, 2020, 112 (05) : 305 - 309
  • [45] Wave-Packet Dynamics Study of the Transport Characteristics of Perforated Bilayer Graphene Nanoribbons
    V. A. Demin
    D. G. Kvashnin
    P. Vancsó
    G. I. Márk
    L. A. Chernozatonskii
    JETP Letters, 2020, 112 : 305 - 309
  • [46] Room Temperature Spin Transport in Sub-50 nm Bilayer Graphene Nanoribbons
    Chen, Peng
    Xie, Guibai
    Wu, Shuang
    Lu, Xiaobo
    Zhang, Guangyu
    ACS APPLIED ELECTRONIC MATERIALS, 2025, 7 (04) : 1392 - 1397
  • [47] Electron binding energy of donors in bilayer graphene with a gate-tunable gap
    Gorbar, E. V.
    Gusynin, V. P.
    Oriekhov, D. O.
    Shklovskii, B. I.
    PHYSICAL REVIEW B, 2024, 109 (16)
  • [48] Electric-field-tunable band gap in commensurate twisted bilayer graphene
    Talkington, Spenser
    Mele, Eugene J.
    PHYSICAL REVIEW B, 2023, 107 (04)
  • [49] Interactions and screening in gated bilayer graphene nanoribbons
    Xu, Hengyi
    Heinzel, T.
    Shylau, A. A.
    Zozoulenko, I. V.
    PHYSICAL REVIEW B, 2010, 82 (11):
  • [50] Negative differential resistance in bilayer graphene nanoribbons
    Habib, K. M. Masum
    Zahid, Ferdows
    Lake, Roger K.
    APPLIED PHYSICS LETTERS, 2011, 98 (19)