Tunable transport gap in narrow bilayer graphene nanoribbons

被引:47
|
作者
Yu, Woo Jong [1 ,3 ]
Duan, Xiangfeng [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
[3] Sungkyunkwan Univ, Dept Elect & Elect Engn, Suwon 440746, South Korea
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
HIGH-QUALITY; LARGE-AREA; BAND-GAP; TRANSISTORS; FILMS;
D O I
10.1038/srep01248
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The lack of a bandgap makes bulk graphene unsuitable for room temperature transistors with a sufficient on/off current ratio. Lateral constriction of charge carriers in graphene nanostructures or vertical inversion symmetry breaking in bilayer graphene are two potential strategies to mitigate this challenge, but each alone is insufficient to consistently achieve a large enough on/off ratio (e.g. > 1000) for typical logic applications. Herein we report the combination of lateral carrier constriction and vertical inversion symmetry breaking in bilayer graphene nanoribbons (GNRs) to tune their transport gaps and improve the on/off ratio. Our studies demonstrate that the on/off current ratio of bilayer GNRs can be systematically increased upon applying a vertical electric field, to achieve a largest on/off current ratio over 3000 at room temperature.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Quasi-free-standing bilayer graphene nanoribbons probed by electronic transport
    Miccoli, Ilio
    Aprojanz, Johannes
    Baringhaus, Jens
    Lichtenstein, Timo
    Galves, Lauren A.
    Lopes, Joao Marcelo J.
    Tegenkamp, Christoph
    APPLIED PHYSICS LETTERS, 2017, 110 (05)
  • [32] Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect
    Castro, Eduardo V.
    Novoselov, K. S.
    Morozov, S. V.
    Peres, N. M. R.
    Dos Santos, J. M. B. Lopes
    Nilsson, Johan
    Guinea, F.
    Geim, A. K.
    Castro Neto, A. H.
    PHYSICAL REVIEW LETTERS, 2007, 99 (21)
  • [33] Pseudospin valve in bilayer graphene nanoribbons
    Li, Xiaoguang
    Zhang, Zhenyu
    Xiao, Di
    PHYSICAL REVIEW B, 2010, 81 (19):
  • [34] Many-body enhancement of the tunable gap in biased bilayer graphene
    Stroucken, T.
    Gronqvist, J. H.
    Koch, S. W.
    APPLIED PHYSICS LETTERS, 2013, 103 (16)
  • [35] Tunable Band Gap in Bilayer Graphene by Trimesic Acid Molecular Doping
    Shayeganfar, Farzaneh
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (46): : 27157 - 27163
  • [36] Transport properties of AB-stacked bilayer graphene nanoribbons in an electric field
    T. S. Li
    Y. C. Huang
    S. C. Chang
    Y. C. Chuang
    M. F. Lin
    The European Physical Journal B, 2008, 64 : 73 - 80
  • [37] Transport properties of AB-stacked bilayer graphene nanoribbons in an electric field
    Li, T. S.
    Huang, Y. C.
    Chang, S. C.
    Chuang, Y. C.
    Lin, M. F.
    EUROPEAN PHYSICAL JOURNAL B, 2008, 64 (01): : 73 - 80
  • [38] Spin-polarized energy-gap opening in asymmetric bilayer graphene nanoribbons
    Kim, Gyubong
    Jhi, Seung-Hoon
    APPLIED PHYSICS LETTERS, 2010, 97 (26)
  • [39] Embedded boron nitride domains in graphene nanoribbons for transport gap engineering
    Lopez-Bezanilla, Alejandro
    Roche, Stephan
    PHYSICAL REVIEW B, 2012, 86 (16)
  • [40] Coulomb gap in graphene nanoribbons
    Droescher, S.
    Knowles, H.
    Meir, Y.
    Ensslin, K.
    Ihn, T.
    PHYSICAL REVIEW B, 2011, 84 (07):