Tunable transport gap in narrow bilayer graphene nanoribbons

被引:47
|
作者
Yu, Woo Jong [1 ,3 ]
Duan, Xiangfeng [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
[3] Sungkyunkwan Univ, Dept Elect & Elect Engn, Suwon 440746, South Korea
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
HIGH-QUALITY; LARGE-AREA; BAND-GAP; TRANSISTORS; FILMS;
D O I
10.1038/srep01248
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The lack of a bandgap makes bulk graphene unsuitable for room temperature transistors with a sufficient on/off current ratio. Lateral constriction of charge carriers in graphene nanostructures or vertical inversion symmetry breaking in bilayer graphene are two potential strategies to mitigate this challenge, but each alone is insufficient to consistently achieve a large enough on/off ratio (e.g. > 1000) for typical logic applications. Herein we report the combination of lateral carrier constriction and vertical inversion symmetry breaking in bilayer graphene nanoribbons (GNRs) to tune their transport gaps and improve the on/off ratio. Our studies demonstrate that the on/off current ratio of bilayer GNRs can be systematically increased upon applying a vertical electric field, to achieve a largest on/off current ratio over 3000 at room temperature.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] An ab initio study on energy gap of bilayer graphene nanoribbons with armchair edges
    Lam, Kai-Tak
    Liang, Gengchiau
    APPLIED PHYSICS LETTERS, 2008, 92 (22)
  • [22] Oxygen Surface Functionalization of Graphene Nanoribbons for Transport Gap Engineering
    Cresti, Alessandro
    Lopez-Bezanilla, Alejandro
    Ordejon, Pablo
    Roche, Stephan
    ACS NANO, 2011, 5 (11) : 9271 - 9277
  • [23] Effect of Coulomb interaction on transport gap in ideal graphene nanoribbons
    Ihnatsenka, S.
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (14)
  • [24] Mobility gap and quantum transport in a functionalized graphene bilayer
    Missaoui, Ahmed
    Khabthani, Jouda Jemaa
    Jaidane, Nejm-Eddine
    Mayou, Didier
    de Laissardiere, Guy Trambly
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (19)
  • [25] Toward Tunable Band Gap and Tunable Dirac Point in Bilayer Graphene with Molecular Doping
    Yu, Woo Jong
    Liao, Lei
    Chae, Sang Hoon
    Lee, Young Hee
    Duan, Xiangfeng
    NANO LETTERS, 2011, 11 (11) : 4759 - 4763
  • [26] Tunable thermal property in edge hydrogenated AA-stacked bilayer graphene nanoribbons
    Tang, Yunqing
    Li, Junchao
    Wu, Xiaoju
    Liu, Qiaoya
    Liu, Yu
    Yang, Ping
    APPLIED SURFACE SCIENCE, 2016, 362 : 86 - 92
  • [27] Gate tunable layer selectivity of transport in bilayer graphene nanostructures
    Abdullah, H. M.
    Zarenia, M.
    Bahlouli, H.
    Peeters, F. M.
    Van Duppen, B.
    EPL, 2016, 113 (01)
  • [28] Gate-tunable topological valley transport in bilayer graphene
    Sui, Mengqiao
    Chen, Guorui
    Ma, Liguo
    Shan, Wen-Yu
    Tian, Dai
    Watanabe, Kenji
    Taniguchi, Takashi
    Jin, Xiaofeng
    Yao, Wang
    Xiao, Di
    Zhang, Yuanbo
    NATURE PHYSICS, 2015, 11 (12) : 1027 - +
  • [29] Transport Spectroscopy of Ultraclean Tunable Band Gaps in Bilayer Graphene
    Icking, Eike
    Banszerus, Luca
    Woertche, Frederike
    Volmer, Frank
    Schmidt, Philipp
    Steiner, Corinne
    Engels, Stephan
    Hesselmann, Jonas
    Goldsche, Matthias
    Watanabe, Kenji
    Taniguchi, Takashi
    Volk, Christian
    Beschoten, Bernd
    Stampfer, Christoph
    ADVANCED ELECTRONIC MATERIALS, 2022, 8 (11)
  • [30] Gate-tunable topological valley transport in bilayer graphene
    Mengqiao Sui
    Guorui Chen
    Liguo Ma
    Wen-Yu Shan
    Dai Tian
    Kenji Watanabe
    Takashi Taniguchi
    Xiaofeng Jin
    Wang Yao
    Di Xiao
    Yuanbo Zhang
    Nature Physics, 2015, 11 : 1027 - 1031