Density and location of resonances for convex co-compact hyperbolic surfaces

被引:17
|
作者
Naud, Frederic [1 ]
机构
[1] Univ Avignon & Pays Vaucluse, Lab Anal Nonlineaire & Geometrie, EA 2151, F-84018 Avignon, France
关键词
ZETA-FUNCTION; UPPER-BOUNDS; LIMIT SET;
D O I
10.1007/s00222-013-0463-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X = Gamma\H-2 be a convex co-compact hyperbolic surface and let delta be the Hausdorff dimension of the limit set. Let Delta(X) be the hyperbolic Laplacian. We show that the density of resonances of the Laplacian Delta(X) in rectangles {sigma <= Re(s) <= delta, vertical bar Im(s)vertical bar <= T} is less than O(T1+tau(sigma)) in the limit T -> infinity, where tau(sigma) < delta as long as sigma > delta/2. This improves the previous fractal Weyl upper bound of Zworski (Invent. Math. 136(2):353-409, 1999) and goes in the direction of a conjecture stated in Jakobson and Naud (Geom. Funct. Anal. 22(2):352-368, 2012).
引用
收藏
页码:723 / 750
页数:28
相关论文
共 50 条
  • [41] Transition operators on co-compact G-spaces
    Saloff-Coste, Laurent
    Woess, Wolfgang
    REVISTA MATEMATICA IBEROAMERICANA, 2006, 22 (03) : 747 - 799
  • [42] ESTIMATES OF CUSP FORMS FOR CERTAIN CO-COMPACT ARITHMETIC SUBGROUPS
    Aryasomayajula, Anilatmaja
    Balasubramanyam, Baskar
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (10) : 4191 - 4201
  • [43] CIRCLE PACKINGS AND CO-COMPACT EXTENSIONS OF KLEINIAN-GROUPS
    BROOKS, R
    INVENTIONES MATHEMATICAE, 1986, 86 (03) : 461 - 469
  • [44] Dynamically defined topological entropy of co-compact open covers
    Gorouhi, Adel
    Ebrahimi, Mohamad
    Mohammadi, Uosef
    Italian Journal of Pure and Applied Mathematics, 2022, 47 : 495 - 501
  • [46] Dynamically defined topological entropy of co-compact open covers
    Gorouhi, Adel
    Ebrahimi, Mohammadi
    Mohammadi, Uosef
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (47): : 495 - 501
  • [47] Coincidence of the upper Kuratowski topology with the co-compact topology on compact sets, and the Prohorov property
    Bouziad, A
    TOPOLOGY AND ITS APPLICATIONS, 2002, 120 (03) : 283 - 299
  • [48] Counting resonances on hyperbolic surfaces with unitary twists
    Doll, Moritz
    Fedosova, Ksenia
    Pohl, Anke
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2024, 32 (10) : 2805 - 2887
  • [49] The minimally displaced set of an irreducible automorphism of FN is co-compact
    Francaviglia, Stefano
    Martino, Armando
    Syrigos, Dionysios
    ARCHIV DER MATHEMATIK, 2021, 116 (04) : 369 - 383
  • [50] Fuchsian groups and compact hyperbolic surfaces
    Benoist, Yves
    Oh, Hee
    ENSEIGNEMENT MATHEMATIQUE, 2016, 62 (1-2): : 189 - 198