Density and location of resonances for convex co-compact hyperbolic surfaces

被引:17
|
作者
Naud, Frederic [1 ]
机构
[1] Univ Avignon & Pays Vaucluse, Lab Anal Nonlineaire & Geometrie, EA 2151, F-84018 Avignon, France
关键词
ZETA-FUNCTION; UPPER-BOUNDS; LIMIT SET;
D O I
10.1007/s00222-013-0463-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X = Gamma\H-2 be a convex co-compact hyperbolic surface and let delta be the Hausdorff dimension of the limit set. Let Delta(X) be the hyperbolic Laplacian. We show that the density of resonances of the Laplacian Delta(X) in rectangles {sigma <= Re(s) <= delta, vertical bar Im(s)vertical bar <= T} is less than O(T1+tau(sigma)) in the limit T -> infinity, where tau(sigma) < delta as long as sigma > delta/2. This improves the previous fractal Weyl upper bound of Zworski (Invent. Math. 136(2):353-409, 1999) and goes in the direction of a conjecture stated in Jakobson and Naud (Geom. Funct. Anal. 22(2):352-368, 2012).
引用
收藏
页码:723 / 750
页数:28
相关论文
共 50 条
  • [31] Distribution of Resonances for Hyperbolic Surfaces
    Borthwick, David
    EXPERIMENTAL MATHEMATICS, 2014, 23 (01) : 25 - 45
  • [32] Duality results for co-compact Gabor systems
    Jakobsen, Mads Sielemann
    Lemvig, Jakob
    2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, : 144 - 147
  • [33] Co-compact Gabor Systems on Locally Compact Abelian Groups
    Mads Sielemann Jakobsen
    Jakob Lemvig
    Journal of Fourier Analysis and Applications, 2016, 22 : 36 - 70
  • [34] Scales for co-compact embeddings of virtually free groups
    Baumgartner, Udo
    GEOMETRIAE DEDICATA, 2007, 130 (01) : 163 - 175
  • [35] Co-Compact Separation Axioms and Slight Co-Continuity
    Al Ghour, Samer
    Moghrabi, Enas
    SYMMETRY-BASEL, 2020, 12 (10): : 1 - 14
  • [36] More examples of discrete co-compact group actions
    Hambleton, Ian
    Pedersen, Erik K.
    ALGEBRAIC TOPOLOGY: APPLICATIONS AND NEW DIRECTIONS, 2014, 620 : 133 - 143
  • [37] Scales for co-compact embeddings of virtually free groups
    Udo Baumgartner
    Geometriae Dedicata, 2007, 130 : 163 - 175
  • [38] Classical and quantum resonances for hyperbolic surfaces
    Colin Guillarmou
    Joachim Hilgert
    Tobias Weich
    Mathematische Annalen, 2018, 370 : 1231 - 1275
  • [39] Classical and quantum resonances for hyperbolic surfaces
    Guillarmou, Colin
    Hilgert, Joachim
    Weich, Tobias
    MATHEMATISCHE ANNALEN, 2018, 370 (3-4) : 1231 - 1275
  • [40] THE UNITARY EXTENSION PRINCIPLE FOR LOCALLY COMPACT ABELIAN GROUPS WITH CO-COMPACT SUBGROUPS
    Christensen, Ole
    Goh, Say Song
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (03) : 1189 - 1202