Density and location of resonances for convex co-compact hyperbolic surfaces

被引:17
|
作者
Naud, Frederic [1 ]
机构
[1] Univ Avignon & Pays Vaucluse, Lab Anal Nonlineaire & Geometrie, EA 2151, F-84018 Avignon, France
关键词
ZETA-FUNCTION; UPPER-BOUNDS; LIMIT SET;
D O I
10.1007/s00222-013-0463-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X = Gamma\H-2 be a convex co-compact hyperbolic surface and let delta be the Hausdorff dimension of the limit set. Let Delta(X) be the hyperbolic Laplacian. We show that the density of resonances of the Laplacian Delta(X) in rectangles {sigma <= Re(s) <= delta, vertical bar Im(s)vertical bar <= T} is less than O(T1+tau(sigma)) in the limit T -> infinity, where tau(sigma) < delta as long as sigma > delta/2. This improves the previous fractal Weyl upper bound of Zworski (Invent. Math. 136(2):353-409, 1999) and goes in the direction of a conjecture stated in Jakobson and Naud (Geom. Funct. Anal. 22(2):352-368, 2012).
引用
收藏
页码:723 / 750
页数:28
相关论文
共 50 条
  • [21] L2-bounds for drilling short geodesics in convex co-compact hyperbolic 3-manifolds
    Bridgeman, Martin
    Bromberg, Kenneth
    ADVANCES IN MATHEMATICS, 2024, 451
  • [22] The Selberg zeta function for convex co-compact Schottky groups
    Guillopé, L
    Lin, KK
    Zworski, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 245 (01) : 149 - 176
  • [23] Expansion of Co-Compact Convex Spacelike Hypersurfaces in Minkowski Space by their Curvature
    Andrews, Ben
    Chen, Xuzhong
    Fang, Hanlong
    McCoy, James
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2015, 64 (02) : 635 - 662
  • [24] A flat torus theorem for convex co-compact actions of projective linear groups
    Islam, Mitul
    Zimmer, Andrew
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 103 (02): : 470 - 489
  • [25] Least area planes in Gromov hyperbolic 3-spaces with co-compact metric
    Soma, T
    GEOMETRIAE DEDICATA, 2005, 112 (01) : 123 - 128
  • [26] Least Area Planes in Gromov Hyperbolic 3-Spaces with Co-compact Metric
    Teruhiko Soma
    Geometriae Dedicata, 2005, 112 : 123 - 128
  • [27] Existence of least area planes in hyperbolic 3-space with co-compact metric
    Soma, T
    TOPOLOGY, 2004, 43 (03) : 705 - 716
  • [28] The Entropy of Co-Compact Open Covers
    Wei, Zheng
    Wang, Yangeng
    Wei, Guo
    Wang, Tonghui
    Bourquin, Steven
    ENTROPY, 2013, 15 (07): : 2464 - 2479
  • [29] Co-compact Gabor Systems on Locally Compact Abelian Groups
    Jakobsen, Mads Sielemann
    Lemvig, Jakob
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2016, 22 (01) : 36 - 70
  • [30] RANDOM WALKS ON CO-COMPACT FUCHSIAN GROUPS
    Gouezel, Sebastien
    Lalley, Steven P.
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2013, 46 (01): : 129 - 173