Positive solutions for parametric (p(z), q(z))-equations

被引:4
|
作者
Gasinski, Leszek [1 ]
Krech, Ireneusz [1 ]
Papageorgiou, Nikolaos S. [2 ]
机构
[1] Pedag Univ Cracow, Dept Math, Podchorazych 2, PL-30084 Krakow, Poland
[2] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
来源
OPEN MATHEMATICS | 2020年 / 18卷
关键词
anisotropic regularity; anisotropic maximum principle; positive solutions; minimal positive solution; superlinear reaction; BOUNDARY-VALUE PROBLEM; DIFFERENTIAL-EQUATIONS; EIGENVALUE PROBLEM; INEQUALITY; INDEFINITE; EXISTENCE; DRIVEN; (P;
D O I
10.1515/math-2020-0074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a parametric elliptic equation driven by the anisotropic (p, q)-Laplacian. The reaction is superlinear. We prove a "bifurcation-type" theorem describing the change in the set of positive solutions as the parameter lambda moves in R+ = (0, +infinity).
引用
收藏
页码:1076 / 1096
页数:21
相关论文
共 50 条
  • [1] Positive solutions for singular p(z)$p(z)$-equations
    Liu, Zhenhai
    Papageorgiou, Nikolaos S. S.
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (05) : 2024 - 2045
  • [2] Superlinear (p(z), q(z))-equations
    Papageorgiou, N. S.
    Vetro, C.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (01) : 8 - 25
  • [3] Parametric anisotropic singular equations with [p(z), q(z)]-growth conditions and indefinite perturbation
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Zhang, Jian
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (04)
  • [4] Parametric anisotropic singular equations with [p(z), q(z)]-growth conditions and indefinite perturbation
    Nikolaos S. Papageorgiou
    Vicenţiu D. Rădulescu
    Jian Zhang
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [5] Positive solutions for parametric singular Dirichlet ( p, q ) -equations
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Zhang, Youpei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 198 (198)
  • [6] Positive and nodal solutions for parametric superlinear weighted (p, q)-equations
    Papageorgiou, Nikolaos S.
    Scapellato, Andrea
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 71
  • [7] Weak Solutions for a (p(z), q(z))-Laplacian Dirichlet Problem
    Nastasi, Antonella
    FILOMAT, 2020, 34 (03) : 999 - 1011
  • [8] Global Multiplicity for the Positive Solutions of Parametric Singular (p, q)-equations with Indefinite Perturbations
    Papageorgiou, Nikolaos S.
    Zhang, Chao
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (01)
  • [9] Global Multiplicity for the Positive Solutions of Parametric Singular (p, q)-equations with Indefinite Perturbations
    Nikolaos S. Papageorgiou
    Chao Zhang
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [10] POSITIVE SOLUTIONS FOR PARAMETRIC p-LAPLACIAN EQUATIONS
    Papageorgiou, Nikolaos S.
    Smyrlis, George
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (05) : 1545 - 1570