Deep learning and radiomics framework for PSMA-RADS classification of prostate cancer on PSMA PET

被引:18
|
作者
Leung, Kevin H. [1 ,2 ]
Rowe, Steven P. [2 ,3 ,4 ]
Leal, Jeffrey P. [2 ]
Ashrafinia, Saeed [2 ]
Sadaghiani, Mohammad S. [2 ]
Chung, Hyun Woo [5 ]
Dalaie, Pejman [2 ]
Tulbah, Rima [2 ]
Yin, Yafu [6 ]
VanDenBerg, Ryan [2 ]
Werner, Rudolf A. [7 ]
Pienta, Kenneth J. [3 ,4 ]
Gorin, Michael A. [8 ]
Du, Yong [2 ]
Pomper, Martin G. [1 ,2 ,3 ,4 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, 601 N Caroline St,JHOC 4263, Baltimore, MD 21287 USA
[2] Johns Hopkins Univ, Sch Med, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD USA
[3] Johns Hopkins Univ, Sch Med, James Buchanan Brady Urol Inst, Baltimore, MD USA
[4] Johns Hopkins Univ, Sch Med, Dept Urol, Baltimore, MD USA
[5] Konkuk Univ, Sch Med, Med Ctr, Dept Nucl Med, Seoul, South Korea
[6] Shanghai Jiao Tong Univ, Xinhua Hosp, Sch Med, Dept Nucl Med, Shanghai, Peoples R China
[7] Univ Hosp Wurzburg, Dept Nucl Med, Wurzburg, Germany
[8] Icahn Sch Med Mt Sinai, Milton & Carroll Petrie Dept Urol, New York, NY USA
基金
美国国家卫生研究院;
关键词
PSMA-RADS; PSMA PET; Deep learning; Classification; t-SNE; Prostate cancer; LESIONS; IMAGES;
D O I
10.1186/s13550-022-00948-1
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Accurate classification of sites of interest on prostate-specific membrane antigen (PSMA) positron emission tomography (PET) images is an important diagnostic requirement for the differentiation of prostate cancer (PCa) from foci of physiologic uptake. We developed a deep learning and radiomics framework to perform lesion-level and patient-level classification on PSMA PET images of patients with PCa. Methods: This was an IRB-approved, HIPAA-compliant, retrospective study. Lesions on [F-18]DCFPyL PET/CT scans were assigned to PSMA reporting and data system (PSMA-RADS) categories and randomly partitioned into training, validation, and test sets. The framework extracted image features, radiomic features, and tissue type information from a cropped PET image slice containing a lesion and performed PSMA-RADS and PCa classification. Performance was evaluated by assessing the area under the receiver operating characteristic curve (AUROC). A t-distributed stochastic neighbor embedding (t-SNE) analysis was performed. Confidence and probability scores were measured. Statistical significance was determined using a two-tailed t test. Results: PSMA PET scans from 267 men with PCa had 3794 lesions assigned to PSMA-RADS categories. The framework yielded AUROC values of 0.87 and 0.90 for lesion-level and patient-level PSMA-RADS classification, respectively, on the test set. The framework yielded AUROC values of 0.92 and 0.85 for lesion-level and patient-level PCa classification, respectively, on the test set. A t-SNE analysis revealed learned relationships between the PSMA-RADS categories and disease findings. Mean confidence scores reflected the expected accuracy and were significantly higher for correct predictions than for incorrect predictions (P < 0.05). Measured probability scores reflected the likelihood of PCa consistent with the PSMA-RADS framework. Conclusion: The framework provided lesion-level and patient-level PSMA-RADS and PCa classification on PSMA PET images. The framework was interpretable and provided confidence and probability scores that may assist physicians in making more informed clinical decisions.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Clinical perspectives of PSMA PET/MRI for prostate cancer
    Barbosa, Felipe de Galiza
    Queiroz, Marcelo Araujo
    Nunes, Rafael Fernandes
    Gomes Marin, Jose Flavio
    Buchpiguel, Carlos Alberto
    Cerri, Giovanni Guido
    CLINICS, 2018, 73
  • [42] Introduction of a molecular PI-RADS classification system for 68Ga-PSMA-PET/MR imaging of primary prostate cancer
    Luetje, S.
    Wetter, A.
    Cohnen, J.
    Sawicki, L. M.
    Bockisch, A.
    Poeppel, T. D.
    Gomez, B.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2016, 43 : S335 - S335
  • [43] PSMA PET imaging in the diagnosis and management of prostate cancer
    Houshmand, Sina
    Lawhn-Heath, Courtney
    Behr, Spencer
    ABDOMINAL RADIOLOGY, 2023, 48 (12) : 3610 - 3623
  • [44] Impact of PSMA PET scan on prostate cancer management
    Baxi, Hemang
    Mayank, Manas
    Kallur, Kumar
    BJU INTERNATIONAL, 2015, 116 : 19 - 19
  • [45] PSMA PET imaging in the diagnosis and management of prostate cancer
    Sina Houshmand
    Courtney Lawhn-Heath
    Spencer Behr
    Abdominal Radiology, 2023, 48 : 3610 - 3623
  • [46] PSMA PET: Transformational Change in Prostate Cancer Management?
    Jadvar, Hossein
    Ballas, Leslie K.
    JOURNAL OF NUCLEAR MEDICINE, 2018, 59 (02) : 228 - 229
  • [47] Current use of PSMA - PET in prostate cancer management
    Maurer, Tobias
    Eiber, Matthias
    Schwaiger, Markus
    Gschwend, Juergen E.
    NATURE REVIEWS UROLOGY, 2016, 13 (04) : 226 - 235
  • [48] Radiomics from [18F]PSMA PET-CT with machine learning as a novel biomarker in primary prostate cancer
    Cysouw, M.
    Jansen, B. H.
    van der Zande, K. C.
    de Vries, B. M.
    van Moorselaar, J.
    Vis, A. N.
    Hoekstra, O. S.
    van de Brug, T.
    Oprea-Lager, D. E.
    Boellaard, R.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (SUPPL 1) : S64 - S64
  • [49] The accuracy of PSMA PET/CT for assessing intraprostatic lesions in patients with prostate cancer: An evaluation of the PI-RADS, PRIMARY and PSMA-expression score
    Donck, E.
    De Visschere, P.
    Van Praet, C.
    De Man, K.
    Waterschoot, R.
    Verbeke, S.
    Hendrickx, S.
    Villeirs, G.
    Berquin, C.
    Lumen, N.
    EUROPEAN UROLOGY, 2024, 85 : S1616 - S1617
  • [50] Interobserver Agreement for the Standardized Reporting System PSMA-RADS 1.0 on 18F-DCFPyL PET/CT Imaging
    Werner, Rudolf A.
    Bundschuh, Ralph A.
    Bundschuh, Lena
    Javadi, Mehrbod S.
    Leal, Jeffrey P.
    Higuchi, Takahiro
    Pienta, Kenneth J.
    Buck, Andreas K.
    Pomper, Martin G.
    Gorin, Michael A.
    Lapa, Constantin
    Rowe, Steven P.
    JOURNAL OF NUCLEAR MEDICINE, 2018, 59 (12) : 1857 - 1864