Deep learning and radiomics framework for PSMA-RADS classification of prostate cancer on PSMA PET

被引:18
|
作者
Leung, Kevin H. [1 ,2 ]
Rowe, Steven P. [2 ,3 ,4 ]
Leal, Jeffrey P. [2 ]
Ashrafinia, Saeed [2 ]
Sadaghiani, Mohammad S. [2 ]
Chung, Hyun Woo [5 ]
Dalaie, Pejman [2 ]
Tulbah, Rima [2 ]
Yin, Yafu [6 ]
VanDenBerg, Ryan [2 ]
Werner, Rudolf A. [7 ]
Pienta, Kenneth J. [3 ,4 ]
Gorin, Michael A. [8 ]
Du, Yong [2 ]
Pomper, Martin G. [1 ,2 ,3 ,4 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, 601 N Caroline St,JHOC 4263, Baltimore, MD 21287 USA
[2] Johns Hopkins Univ, Sch Med, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD USA
[3] Johns Hopkins Univ, Sch Med, James Buchanan Brady Urol Inst, Baltimore, MD USA
[4] Johns Hopkins Univ, Sch Med, Dept Urol, Baltimore, MD USA
[5] Konkuk Univ, Sch Med, Med Ctr, Dept Nucl Med, Seoul, South Korea
[6] Shanghai Jiao Tong Univ, Xinhua Hosp, Sch Med, Dept Nucl Med, Shanghai, Peoples R China
[7] Univ Hosp Wurzburg, Dept Nucl Med, Wurzburg, Germany
[8] Icahn Sch Med Mt Sinai, Milton & Carroll Petrie Dept Urol, New York, NY USA
基金
美国国家卫生研究院;
关键词
PSMA-RADS; PSMA PET; Deep learning; Classification; t-SNE; Prostate cancer; LESIONS; IMAGES;
D O I
10.1186/s13550-022-00948-1
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Accurate classification of sites of interest on prostate-specific membrane antigen (PSMA) positron emission tomography (PET) images is an important diagnostic requirement for the differentiation of prostate cancer (PCa) from foci of physiologic uptake. We developed a deep learning and radiomics framework to perform lesion-level and patient-level classification on PSMA PET images of patients with PCa. Methods: This was an IRB-approved, HIPAA-compliant, retrospective study. Lesions on [F-18]DCFPyL PET/CT scans were assigned to PSMA reporting and data system (PSMA-RADS) categories and randomly partitioned into training, validation, and test sets. The framework extracted image features, radiomic features, and tissue type information from a cropped PET image slice containing a lesion and performed PSMA-RADS and PCa classification. Performance was evaluated by assessing the area under the receiver operating characteristic curve (AUROC). A t-distributed stochastic neighbor embedding (t-SNE) analysis was performed. Confidence and probability scores were measured. Statistical significance was determined using a two-tailed t test. Results: PSMA PET scans from 267 men with PCa had 3794 lesions assigned to PSMA-RADS categories. The framework yielded AUROC values of 0.87 and 0.90 for lesion-level and patient-level PSMA-RADS classification, respectively, on the test set. The framework yielded AUROC values of 0.92 and 0.85 for lesion-level and patient-level PCa classification, respectively, on the test set. A t-SNE analysis revealed learned relationships between the PSMA-RADS categories and disease findings. Mean confidence scores reflected the expected accuracy and were significantly higher for correct predictions than for incorrect predictions (P < 0.05). Measured probability scores reflected the likelihood of PCa consistent with the PSMA-RADS framework. Conclusion: The framework provided lesion-level and patient-level PSMA-RADS and PCa classification on PSMA PET images. The framework was interpretable and provided confidence and probability scores that may assist physicians in making more informed clinical decisions.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Deep learning and radiomics framework for PSMA-RADS classification of prostate cancer on PSMA PET
    Kevin H. Leung
    Steven P. Rowe
    Jeffrey P. Leal
    Saeed Ashrafinia
    Mohammad S. Sadaghiani
    Hyun Woo Chung
    Pejman Dalaie
    Rima Tulbah
    Yafu Yin
    Ryan VanDenBerg
    Rudolf A. Werner
    Kenneth J. Pienta
    Michael A. Gorin
    Yong Du
    Martin G. Pomper
    EJNMMI Research, 12
  • [2] Prostate-specific membrane antigen targeting positron emission tomography (PSMA-PET) in prostate cancer: PSMA-RADS classification and PROMISE criterias
    Robin, P.
    Palard-Novello, X.
    Bailly, C.
    MEDECINE NUCLEAIRE-IMAGERIE FONCTIONNELLE ET METABOLIQUE, 2023, 47 (05): : 270 - 275
  • [3] Reliability and practicability of PSMA-RADS 1.0 for structured reporting of PSMA-PET/CT scans in prostate cancer patients
    Freba Grawe
    Franziska Blom
    Michael Winkelmann
    Caroline Burgard
    Christine Schmid-Tannwald
    Lena M. Unterrainer
    Gabriel T. Sheikh
    Paulo L. Pfitzinger
    Philipp Kazmierczak
    Clemens C. Cyran
    Jens Ricke
    Christian G. Stief
    Peter Bartenstein
    Johannes Ruebenthaler
    Matthias P. Fabritius
    Thomas Geyer
    European Radiology, 2024, 34 : 1157 - 1166
  • [4] Reliability and practicability of PSMA-RADS 1.0 for structured reporting of PSMA-PET/CT scans in prostate cancer patients
    Grawe, Freba
    Blom, Franziska
    Winkelmann, Michael
    Burgard, Caroline
    Schmid-Tannwald, Christine
    Unterrainer, Lena M.
    Sheikh, Gabriel T.
    Pfitzinger, Paulo L.
    Kazmierczak, Philipp
    Cyran, Clemens C.
    Ricke, Jens
    Stief, Christian G.
    Bartenstein, Peter
    Ruebenthaler, Johannes
    Fabritius, Matthias P.
    Geyer, Thomas
    EUROPEAN RADIOLOGY, 2023, 34 (2) : 1157 - 1166
  • [5] 68Ga-PSMA PET/CT in Recurrent Prostate Cancer after Radical Prostatectomy Using PSMA-RADS Version 2.0
    Masselli, Gabriele
    Sollaku, Saadi
    De Angelis, Cristina
    Polettini, Elisabetta
    Gualdi, Gianfranco
    Casciani, Emanuele
    DIAGNOSTICS, 2024, 14 (12)
  • [6] F18 PSMA 1007 PET/CT experience with equivocal lesions in prostate cancer: Has the time come for PSMA-RADS?
    Bohil, Amit
    Nagabhushan, Seshadri
    Vinjamuri, Sobhan
    JOURNAL OF NUCLEAR MEDICINE, 2021, 62
  • [7] Interobserver and intraobserver agreement of PSMA PET/CT according to miTNM and PSMA-RADS criteria
    Demirci, E.
    Akyel, R.
    Caner, B.
    Alan-Selcuk, N.
    Mese, S. Guven
    Kabasakal, L.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (SUPPL 1) : S25 - S25
  • [8] The Role of PSMA PET/CT in Primary Staging of Prostate Cancer according PSMA-RADS scale and correlation with prognostic staging from AJCC 8th
    Medina-Ornelas, S.
    Garcia-Perez, F.
    Gomez-Argumosa, E.
    Vargas-Ahumada, J.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (SUPPL 1) : S459 - S460
  • [9] PSMA-targeted [18F]DCFPyL PET/CT-avid lesions in a patient with prostate cancer: Clinical decision-making informed by the PSMA-RADS interpretive framework
    Reyes, Diane K.
    Demehri, Shadpour
    Werner, Rudolf A.
    Pomper, Martin G.
    Gorin, Michael A.
    Rowe, Steven P.
    Pienta, Kenneth J.
    UROLOGY CASE REPORTS, 2019, 23 : 72 - 74
  • [10] An Automated Deep Learning-Based Framework for Uptake Segmentation and Classification on PSMA PET/CT Imaging of Patients with Prostate Cancer
    Li, Yang
    Imami, Maliha R.
    Zhao, Linmei
    Amindarolzarbi, Alireza
    Mena, Esther
    Leal, Jeffrey
    Chen, Junyu
    Gafita, Andrei
    Voter, Andrew F.
    Li, Xin
    Du, Yong
    Zhu, Chengzhang
    Choyke, Peter L.
    Zou, Beiji
    Jiao, Zhicheng
    Rowe, Steven P.
    Pomper, Martin G.
    Bai, Harrison X.
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, 37 (5): : 2206 - 2215