Deep learning and radiomics framework for PSMA-RADS classification of prostate cancer on PSMA PET

被引:18
|
作者
Leung, Kevin H. [1 ,2 ]
Rowe, Steven P. [2 ,3 ,4 ]
Leal, Jeffrey P. [2 ]
Ashrafinia, Saeed [2 ]
Sadaghiani, Mohammad S. [2 ]
Chung, Hyun Woo [5 ]
Dalaie, Pejman [2 ]
Tulbah, Rima [2 ]
Yin, Yafu [6 ]
VanDenBerg, Ryan [2 ]
Werner, Rudolf A. [7 ]
Pienta, Kenneth J. [3 ,4 ]
Gorin, Michael A. [8 ]
Du, Yong [2 ]
Pomper, Martin G. [1 ,2 ,3 ,4 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, 601 N Caroline St,JHOC 4263, Baltimore, MD 21287 USA
[2] Johns Hopkins Univ, Sch Med, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD USA
[3] Johns Hopkins Univ, Sch Med, James Buchanan Brady Urol Inst, Baltimore, MD USA
[4] Johns Hopkins Univ, Sch Med, Dept Urol, Baltimore, MD USA
[5] Konkuk Univ, Sch Med, Med Ctr, Dept Nucl Med, Seoul, South Korea
[6] Shanghai Jiao Tong Univ, Xinhua Hosp, Sch Med, Dept Nucl Med, Shanghai, Peoples R China
[7] Univ Hosp Wurzburg, Dept Nucl Med, Wurzburg, Germany
[8] Icahn Sch Med Mt Sinai, Milton & Carroll Petrie Dept Urol, New York, NY USA
基金
美国国家卫生研究院;
关键词
PSMA-RADS; PSMA PET; Deep learning; Classification; t-SNE; Prostate cancer; LESIONS; IMAGES;
D O I
10.1186/s13550-022-00948-1
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Accurate classification of sites of interest on prostate-specific membrane antigen (PSMA) positron emission tomography (PET) images is an important diagnostic requirement for the differentiation of prostate cancer (PCa) from foci of physiologic uptake. We developed a deep learning and radiomics framework to perform lesion-level and patient-level classification on PSMA PET images of patients with PCa. Methods: This was an IRB-approved, HIPAA-compliant, retrospective study. Lesions on [F-18]DCFPyL PET/CT scans were assigned to PSMA reporting and data system (PSMA-RADS) categories and randomly partitioned into training, validation, and test sets. The framework extracted image features, radiomic features, and tissue type information from a cropped PET image slice containing a lesion and performed PSMA-RADS and PCa classification. Performance was evaluated by assessing the area under the receiver operating characteristic curve (AUROC). A t-distributed stochastic neighbor embedding (t-SNE) analysis was performed. Confidence and probability scores were measured. Statistical significance was determined using a two-tailed t test. Results: PSMA PET scans from 267 men with PCa had 3794 lesions assigned to PSMA-RADS categories. The framework yielded AUROC values of 0.87 and 0.90 for lesion-level and patient-level PSMA-RADS classification, respectively, on the test set. The framework yielded AUROC values of 0.92 and 0.85 for lesion-level and patient-level PCa classification, respectively, on the test set. A t-SNE analysis revealed learned relationships between the PSMA-RADS categories and disease findings. Mean confidence scores reflected the expected accuracy and were significantly higher for correct predictions than for incorrect predictions (P < 0.05). Measured probability scores reflected the likelihood of PCa consistent with the PSMA-RADS framework. Conclusion: The framework provided lesion-level and patient-level PSMA-RADS and PCa classification on PSMA PET images. The framework was interpretable and provided confidence and probability scores that may assist physicians in making more informed clinical decisions.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [21] The significance of equivocal bone findings in staging PSMA imaging in the preoperative setting: validation of the PSMA-RADS version 1.0
    Kuten, Jonathan
    Dekalo, Snir
    Mintz, Ishai
    Yossepowitch, Ofer
    Mano, Roy
    Even-Sapir, Einat
    EJNMMI RESEARCH, 2021, 11 (01)
  • [22] Proposal for a Structured Reporting System for Prostate-Specific Membrane Antigen-Targeted PET Imaging: PSMA-RADS Version 1.0
    Rowe, Steven P.
    Pienta, Kenneth J.
    Pomper, Martin G.
    Gorin, Michael A.
    JOURNAL OF NUCLEAR MEDICINE, 2018, 59 (03) : 479 - 485
  • [23] The significance of equivocal bone findings in staging PSMA imaging in the preoperative setting: validation of the PSMA-RADS version 1.0
    Jonathan Kuten
    Snir Dekalo
    Ishai Mintz
    Ofer Yossepowitch
    Roy Mano
    Einat Even-Sapir
    EJNMMI Research, 11
  • [24] Bone Uptake in Prostate Cancer Patients Diagnostic Performances of PSMA-RADS v1.0, Clinical, Biological, and 68Ga-PSMA-11 PET Features to Predict Metastasis After Biochemical Recurrence
    Letang, Anouk
    Crombe, Amandine
    Rousseau, Caroline
    Sargos, Paul
    Merlin, Charles
    Cantarel, Coralie
    Cazeau, Anne-Laure
    CLINICAL NUCLEAR MEDICINE, 2022, 47 (08) : E529 - E539
  • [25] Impact of PSMA PET on Prostate Cancer Management
    Adam B. Weiner
    Raag Agrawal
    Luca F. Valle
    Ida Sonni
    Amar U. Kishan
    Matthew B. Rettig
    Steven S. Raman
    Jeremie Calais
    Paul C. Boutros
    Robert E. Reiter
    Current Treatment Options in Oncology, 2024, 25 : 191 - 205
  • [26] PSMA Ligands for PET Imaging of Prostate Cancer
    Schwarzenboeck, Sarah M.
    Rauscher, Isabel
    Bluemel, Christina
    Fendler, Wolfgang P.
    Rowe, Steven P.
    Pomper, Martin G.
    Asfhar-Oromieh, Ali
    Herrmann, Ken
    Eiber, Matthias
    JOURNAL OF NUCLEAR MEDICINE, 2017, 58 (10) : 1545 - 1552
  • [27] PSMA PET and Radionuclide Therapy in Prostate Cancer
    Bouchelouche, Kirsten
    Turkbey, Baris
    Choyke, Peter L.
    SEMINARS IN NUCLEAR MEDICINE, 2016, 46 (06) : 522 - 535
  • [28] The Agony and Ecstasy of Prostate Cancer PSMA PET
    Gomella, Leonard G.
    CANADIAN JOURNAL OF UROLOGY, 2021, 28 (02) : 10574 - 10575
  • [29] Performance of PSMA PET for Staging of Prostate Cancer
    Guner, A.
    Unal, K.
    Temiz, H.
    Kaya, E.
    Vardareli, E.
    Tuna, M.
    Doganca, T.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (SUPPL 1) : S605 - S605
  • [30] Impact of PSMA PET on Prostate Cancer Management
    Weiner, Adam B.
    Agrawal, Raag
    Valle, Luca F.
    Sonni, Ida
    Kishan, Amar U.
    Rettig, Matthew B.
    Raman, Steven S.
    Calais, Jeremie
    Boutros, Paul C.
    Reiter, Robert E.
    CURRENT TREATMENT OPTIONS IN ONCOLOGY, 2024, 25 (02) : 191 - 205