Approximate maximum entropy on the mean for instrumental variable regression

被引:1
|
作者
Loubes, Jean-Michel [1 ]
Rochet, Paul [1 ]
机构
[1] Univ Toulouse 3, F-31068 Toulouse, France
关键词
Approximate maximum entropy; Inverse problem; INVERSE PROBLEMS;
D O I
10.1016/j.spl.2012.02.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We want to estimate an unknown finite measure mu(x) from a noisy observation of generalized moments of mu(x), defined as the integral of a continuous function Phi with respect to mu(x). Assuming that only a quadratic approximation Phi(m) available, we define an approximate maximum entropy solution as a minimizer of a convex functional subject to a sequence of convex constraints. We establish asymptotic properties of the approximate solution under regularity assumptions on the convex functional, and we study an application of this result to instrumental variable estimation. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:972 / 978
页数:7
相关论文
共 50 条
  • [21] Sets of Superresolution and the Maximum Entropy Method on the Mean
    Gamboa, F.
    Gassiat, E.
    SIAM News, 27 (04):
  • [22] The maximum entropy on the mean method for image deblurring
    Rioux, Gabriel
    Choksi, Rustum
    Hoheisel, Tim
    Marechal, Pierre
    Scarvelis, Christopher
    INVERSE PROBLEMS, 2021, 37 (01)
  • [23] Construction of contingency tables by maximum entropy in the mean
    Gzyl, Henryk
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (20) : 4778 - 4786
  • [24] Modified see variable selection for linear instrumental variable regression models
    Zhao, Peixin
    Xue, Liugen
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (14) : 4852 - 4861
  • [25] Sets of superresolution and the maximum entropy method on the mean
    Gamboa, F
    Gassiat, E
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (04) : 1129 - 1152
  • [26] Bayesian Approximate Kernel Regression With Variable Selection
    Crawford, Lorin
    Wood, Kris C.
    Zhou, Xiang
    Mukherjee, Sayan
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (524) : 1710 - 1721
  • [27] Maximum Approximate Entropy for Normal and Pathological Voices Classification
    Restrepo, Juan F.
    Schlotthauer, Gaston
    Torres, Maria E.
    VI LATIN AMERICAN CONGRESS ON BIOMEDICAL ENGINEERING (CLAIB 2014), 2014, 49 : 548 - 551
  • [28] Gaussian Process Regression for Maximum Entropy Distribution
    Sadr, Mohsen
    Torrilhon, Manuel
    Gorji, M. Hossein
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 418
  • [29] MAXIMUM-ENTROPY AND APPROXIMATE DESCRIPTIONS OF PURE STATES
    PLASTINO, AR
    PLASTINO, A
    PHYSICS LETTERS A, 1993, 181 (06) : 446 - 449
  • [30] Maximum entropy, logistic regression, and species abundance
    He, Fangliang
    OIKOS, 2010, 119 (04) : 578 - 582