Gaussian Process Regression for Maximum Entropy Distribution

被引:12
|
作者
Sadr, Mohsen [1 ]
Torrilhon, Manuel [1 ]
Gorji, M. Hossein [2 ]
机构
[1] Rhein Westfal TH Aachen, Dept Math, MATHCCES, Schinkestr 2, D-52062 Aachen, Germany
[2] Ecole Polytech Fed Lausanne EPFL, MCSS, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Gaussian process regression; Maximum entropy distribution; Moment problem; MOMENT CLOSURES; CONVERGENCE CONDITIONS; ALGORITHM; DENSITY;
D O I
10.1016/j.jcp.2020.109644
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Maximum-Entropy Distributions offer an attractive family of probability densities suitable for moment closure problems. Yet finding the Lagrange multipliers which parametrize these distributions, turns out to be a computational bottleneck for practical closure settings. Motivated by recent success of Gaussian processes, we investigate the suitability of Gaussian priors to approximate the Lagrange multipliers as a map of a given set of moments. Examining various kernel functions, the hyperparameters are optimized by maximizing the log-likelihood. The performance of the devised data-driven Maximum-Entropy closure is studied for couple of test cases including relaxation of non-equilibrium distributions governed by Bhatnagar-Gross-Krook and Boltzmann kinetic equations. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] ON THE DISTRIBUTION OF THE MAXIMUM OF A GAUSSIAN PROCESS
    LIFSHITS, MA
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 1987, 31 (01) : 125 - 132
  • [2] DENSITY OF MAXIMUM DISTRIBUTION OF A GAUSSIAN PROCESS
    WEBER, M
    [J]. JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1985, 25 (03): : 515 - 521
  • [3] DISTRIBUTION DENSITY OF THE MAXIMUM OF A GAUSSIAN PROCESS
    LIFSHITS, MA
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 1985, 29 (04) : 851 - 852
  • [4] A Gaussian Process Regression Model for Distribution Inputs
    Bachoc, Francois
    Gamboa, Fabrice
    Loubes, Jean-Michel
    Venet, Nil
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (10) : 6620 - 6637
  • [5] Regularity of the distribution of the maximum of a Gaussian process with regular paths
    Azaïs, JM
    Wschebor, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (04): : 333 - 336
  • [6] The distribution of the maximum of a Gaussian process:: Rice method revisited
    Azaïs, JM
    Wschebor, M
    [J]. IN AND OUT OF EQUILIBRIUM: PROBABILITY WITH A PHYSICS FLAVOR, 2002, 51 : 321 - 348
  • [7] AN ASYMPTOTIC BOUND FOR THE TAIL OF THE DISTRIBUTION OF THE MAXIMUM OF A GAUSSIAN PROCESS
    BERMAN, SM
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1985, 21 (01): : 47 - 57
  • [8] Maximum Likelihood Estimation in Gaussian Process Regression is Ill-Posed
    Karvonen, Toni
    Oates, Chris J.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [9] Entropy Modeling via Gaussian Process Regression for Learned Image Compression
    Cao, Maida
    Dai, Wenrui
    Li, Shaohui
    Li, Chenglin
    Zou, Junni
    Chen, Ying
    Xiong, Hongkai
    [J]. DCC 2022: 2022 DATA COMPRESSION CONFERENCE (DCC), 2022, : 163 - 172