Approximate maximum entropy on the mean for instrumental variable regression

被引:1
|
作者
Loubes, Jean-Michel [1 ]
Rochet, Paul [1 ]
机构
[1] Univ Toulouse 3, F-31068 Toulouse, France
关键词
Approximate maximum entropy; Inverse problem; INVERSE PROBLEMS;
D O I
10.1016/j.spl.2012.02.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We want to estimate an unknown finite measure mu(x) from a noisy observation of generalized moments of mu(x), defined as the integral of a continuous function Phi with respect to mu(x). Assuming that only a quadratic approximation Phi(m) available, we define an approximate maximum entropy solution as a minimizer of a convex functional subject to a sequence of convex constraints. We establish asymptotic properties of the approximate solution under regularity assumptions on the convex functional, and we study an application of this result to instrumental variable estimation. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:972 / 978
页数:7
相关论文
共 50 条
  • [31] Instrumental variable estimation for functional concurrent regression models
    Petrovich, Justin
    Taoufik, Bahaeddine
    Davis, Zachary George
    JOURNAL OF APPLIED STATISTICS, 2024, 51 (08) : 1570 - 1589
  • [32] Instrumental variable quantile regression: A robust inference approach
    Chernozhukov, Victor
    Hansen, Christian
    JOURNAL OF ECONOMETRICS, 2008, 142 (01) : 379 - 398
  • [33] On Instrumental Variable Regression for Deep Offline Policy Evaluation
    Chen, Yutian
    Xu, Liyuan
    Gulcehre, Caglar
    Le Paine, Tom
    Gretton, Arthur
    de Freitas, Nando
    Doucet, Arnaud
    Journal of Machine Learning Research, 2022, 23
  • [34] Decentralization estimators for instrumental variable quantile regression models
    Kaido, Hiroaki
    Wuthrich, Kaspar
    QUANTITATIVE ECONOMICS, 2021, 12 (02) : 443 - 475
  • [35] Bayesian model averaging in the instrumental variable regression model
    Koop, Gary
    Leon-Gonzalez, Roberto
    Strachan, Rodney
    JOURNAL OF ECONOMETRICS, 2012, 171 (02) : 237 - 250
  • [36] Deep partial least squares for instrumental variable regression
    Nareklishvili, Maria
    Polson, Nicholas
    Sokolov, Vadim
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2023, 39 (06) : 734 - 754
  • [37] On Instrumental Variable Regression for Deep Offline Policy Evaluation
    Chen, Yutian
    Xu, Liyuan
    Gulcehre, Caglar
    Le Paine, Tom
    Gretton, Arthur
    de Freitas, Nando
    Doucet, Arnaud
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [38] Estimating the local mean for Bayesian maximum entropy by generalized least squares and maximum likelihood, and an application to the spatial analysis of a censored soil variable
    Orton, T. G.
    Lark, R. M.
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2007, 58 (01) : 60 - 73
  • [39] Hidden Variable Discovery Based on Regression and Entropy
    Liao, Xingyu
    Liu, Xiaoping
    MATHEMATICS, 2024, 12 (09)
  • [40] Tracking a Well Diversified Portfolio with Maximum Entropy in the Mean
    Arratia, Argimiro
    Gzyl, Henryk
    Mayoral, Silvia
    MATHEMATICS, 2022, 10 (04)