Approximate maximum entropy on the mean for instrumental variable regression

被引:1
|
作者
Loubes, Jean-Michel [1 ]
Rochet, Paul [1 ]
机构
[1] Univ Toulouse 3, F-31068 Toulouse, France
关键词
Approximate maximum entropy; Inverse problem; INVERSE PROBLEMS;
D O I
10.1016/j.spl.2012.02.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We want to estimate an unknown finite measure mu(x) from a noisy observation of generalized moments of mu(x), defined as the integral of a continuous function Phi with respect to mu(x). Assuming that only a quadratic approximation Phi(m) available, we define an approximate maximum entropy solution as a minimizer of a convex functional subject to a sequence of convex constraints. We establish asymptotic properties of the approximate solution under regularity assumptions on the convex functional, and we study an application of this result to instrumental variable estimation. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:972 / 978
页数:7
相关论文
共 50 条
  • [1] Instrumental variable regression via kernel maximum moment loss
    Zhang, Rui
    Imaizumi, Masaaki
    Schoelkopf, Bernhard
    Muandet, Krikamol
    JOURNAL OF CAUSAL INFERENCE, 2023, 11 (01)
  • [3] Bayesian variable selection and estimation in maximum entropy quantile regression
    Tu, Shiyi
    Wang, Min
    Sun, Xiaoqian
    JOURNAL OF APPLIED STATISTICS, 2017, 44 (02) : 253 - 269
  • [4] Kernel Instrumental Variable Regression
    Singh, Rahul
    Sahani, Maneesh
    Gretton, Arthur
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [5] Factor instrumental variable quantile regression
    Chen, Jau-er
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2015, 19 (01): : 71 - 92
  • [6] DOUBLY ROBUST INSTRUMENTAL VARIABLE REGRESSION
    Okui, Ryo
    Small, Dylan S.
    Tan, Zhiqiang
    Robins, James M.
    STATISTICA SINICA, 2012, 22 (01) : 173 - 205
  • [7] Instrumental Variable Regression with Confounder Balancing
    Wu, Anpeng
    Kuang, Kun
    Li, Bo
    Wu, Fei
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [8] INSTRUMENTAL VARIABLE QUANTILE REGRESSION WITH MISCLASSIFICATION
    Ura, Takuya
    ECONOMETRIC THEORY, 2021, 37 (01) : 169 - 204
  • [9] Robustness of Bootstrap in Instrumental Variable Regression
    Camponovo, Lorenzo
    Otsu, Taisuke
    ECONOMETRIC REVIEWS, 2015, 34 (03) : 352 - 393
  • [10] Flexible instrumental variable distributional regression
    Sanchez, Guillermo Briseno
    Hohberg, Maike
    Groll, Andreas
    Kneib, Thomas
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2020, 183 (04) : 1553 - 1574