Robustness of Bootstrap in Instrumental Variable Regression

被引:1
|
作者
Camponovo, Lorenzo [1 ]
Otsu, Taisuke [2 ]
机构
[1] Univ St Gallen, Sch Econ & Polit Sci, St Gallen, Switzerland
[2] London Sch Econ, Dept Econ, London WC2A 2AE, England
基金
瑞士国家科学基金会;
关键词
Bootstrap; Breakdown point; Instrumental variable regression; Robustness; C12; C14; C26; GENERALIZED-METHOD; BREAKDOWN; TESTS; GMM; INFERENCE; EQUATIONS;
D O I
10.1080/07474938.2014.944803
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper studies robustness of bootstrap inference methods for instrumental variable (IV) regression models. We consider test statistics for parameter hypotheses based on the IV estimator and generalized method of trimmed moments (GMTM) estimator introduced by iek (2008, 2009), and compare the pairs and implied probability bootstrap approximations for these statistics by applying the finite sample breakdown point theory. In particular, we study limiting behaviors of the bootstrap quantiles when the values of outliers diverge to infinity but the sample size is held fixed. The outliers are defined as anomalous observations that can arbitrarily change the value of the statistic of interest. We analyze both just- and overidentified cases and discuss implications of the breakdown point analysis to the size and power properties of bootstrap tests. We conclude that the implied probability bootstrap test using the statistic based on the GMTM estimator shows desirable robustness properties. Simulation studies endorse this conclusion. An empirical example based on Romer's (1993) study on the effect of openness of countries to inflation rates is presented. Several extensions including the analysis for the residual bootstrap are provided.
引用
收藏
页码:352 / 393
页数:42
相关论文
共 50 条
  • [1] Kernel Instrumental Variable Regression
    Singh, Rahul
    Sahani, Maneesh
    Gretton, Arthur
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [2] Factor instrumental variable quantile regression
    Chen, Jau-er
    [J]. STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2015, 19 (01): : 71 - 92
  • [3] DOUBLY ROBUST INSTRUMENTAL VARIABLE REGRESSION
    Okui, Ryo
    Small, Dylan S.
    Tan, Zhiqiang
    Robins, James M.
    [J]. STATISTICA SINICA, 2012, 22 (01) : 173 - 205
  • [4] Instrumental Variable Regression with Confounder Balancing
    Wu, Anpeng
    Kuang, Kun
    Li, Bo
    Wu, Fei
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [5] INSTRUMENTAL VARIABLE QUANTILE REGRESSION WITH MISCLASSIFICATION
    Ura, Takuya
    [J]. ECONOMETRIC THEORY, 2021, 37 (01) : 169 - 204
  • [6] Flexible instrumental variable distributional regression
    Sanchez, Guillermo Briseno
    Hohberg, Maike
    Groll, Andreas
    Kneib, Thomas
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2020, 183 (04) : 1553 - 1574
  • [7] Bootstrap tests for distributional treatment effects in instrumental variable models
    Abadie, A
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) : 284 - 292
  • [8] Bootstrap inference for instrumental variable models with many weak instruments
    Wang, Wenjie
    Kaffo, Maximilien
    [J]. JOURNAL OF ECONOMETRICS, 2016, 192 (01) : 231 - 268
  • [9] On the robustness of analytical and bootstrap corrections to score tests in regression models
    Ferrari, SLP
    Cribari-Neto, F
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1999, 64 (02) : 177 - 191
  • [10] Retrospectives - Who invented instrumental variable regression?
    Stock, JH
    Trebbi, F
    [J]. JOURNAL OF ECONOMIC PERSPECTIVES, 2003, 17 (03): : 177 - 194