Robustness of Bootstrap in Instrumental Variable Regression

被引:1
|
作者
Camponovo, Lorenzo [1 ]
Otsu, Taisuke [2 ]
机构
[1] Univ St Gallen, Sch Econ & Polit Sci, St Gallen, Switzerland
[2] London Sch Econ, Dept Econ, London WC2A 2AE, England
基金
瑞士国家科学基金会;
关键词
Bootstrap; Breakdown point; Instrumental variable regression; Robustness; C12; C14; C26; GENERALIZED-METHOD; BREAKDOWN; TESTS; GMM; INFERENCE; EQUATIONS;
D O I
10.1080/07474938.2014.944803
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper studies robustness of bootstrap inference methods for instrumental variable (IV) regression models. We consider test statistics for parameter hypotheses based on the IV estimator and generalized method of trimmed moments (GMTM) estimator introduced by iek (2008, 2009), and compare the pairs and implied probability bootstrap approximations for these statistics by applying the finite sample breakdown point theory. In particular, we study limiting behaviors of the bootstrap quantiles when the values of outliers diverge to infinity but the sample size is held fixed. The outliers are defined as anomalous observations that can arbitrarily change the value of the statistic of interest. We analyze both just- and overidentified cases and discuss implications of the breakdown point analysis to the size and power properties of bootstrap tests. We conclude that the implied probability bootstrap test using the statistic based on the GMTM estimator shows desirable robustness properties. Simulation studies endorse this conclusion. An empirical example based on Romer's (1993) study on the effect of openness of countries to inflation rates is presented. Several extensions including the analysis for the residual bootstrap are provided.
引用
收藏
页码:352 / 393
页数:42
相关论文
共 50 条
  • [21] Bayesian model averaging in the instrumental variable regression model
    Koop, Gary
    Leon-Gonzalez, Roberto
    Strachan, Rodney
    [J]. JOURNAL OF ECONOMETRICS, 2012, 171 (02) : 237 - 250
  • [22] Bootstrap Enhanced Penalized Regression for Variable Selection with Neuroimaging Data
    Abram, Samantha V.
    Helwig, Nathaniel E.
    Moodie, Craig A.
    DeYoung, Colin G.
    MacDonald, Angus W., III
    Waller, Niels G.
    [J]. FRONTIERS IN NEUROSCIENCE, 2016, 10
  • [23] Bootstrap Version of Rao–Blackwellization to Two-Step and Instrumental Variable Estimators
    H. D. Vinod
    [J]. Journal of Quantitative Economics, 2022, 20 : 49 - 69
  • [24] Instrumental variable quantile regression under random right censoring
    Beyhum, Jad
    Tedesco, Lorenzo
    Van Keilegom, Ingrid
    [J]. ECONOMETRICS JOURNAL, 2024, 27 (01): : 21 - 36
  • [25] FLEXIBLE INSTRUMENTAL VARIABLE MODELS WITH BAYESIAN ADDITIVE REGRESSION TREES
    Sanbauer, Charles
    Pan, Wei
    [J]. ANNALS OF APPLIED STATISTICS, 2024, 18 (02): : 1471 - 1489
  • [27] INSTRUMENTAL VARIABLE ESTIMATION IN BINARY REGRESSION MEASUREMENT ERROR MODELS
    STEFANSKI, LA
    BUZAS, JS
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) : 541 - 550
  • [28] Scalable Quasi-Bayesian Inference for Instrumental Variable Regression
    Wang, Ziyu
    Zhou, Yuhao
    Ren, Tongzheng
    Zhu, Jun
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [29] A branch-and-bound algorithm for instrumental variable quantile regression
    Xu G.
    Burer S.
    [J]. Mathematical Programming Computation, 2017, 9 (4) : 471 - 497
  • [30] Instrumental variable regression via kernel maximum moment loss
    Zhang, Rui
    Imaizumi, Masaaki
    Schoelkopf, Bernhard
    Muandet, Krikamol
    [J]. JOURNAL OF CAUSAL INFERENCE, 2023, 11 (01)