Analysis of Single-Cell RNA-seq Data by Clustering Approaches

被引:22
|
作者
Zhu, Xiaoshu [1 ,2 ,3 ]
Li, Hong-Dong [1 ]
Guo, Lilu [2 ,3 ]
Wu, Fang-Xiang [4 ,5 ]
Wang, Jianxin [1 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Yulin Normal Univ, Sch Comp Sci & Engn, Yulin 537000, Guangxi, Peoples R China
[3] Yulin Normal Univ, Guangxi Univ Key Lab Complex Syst Optimizat & Big, Yulin 537000, Guangxi, Peoples R China
[4] Univ Saskatchewan, Div Biomed Engn, Saskatoon, SK S7N 5A9, Canada
[5] Univ Saskatchewan, Dept Mech Engn, Saskatoon, SK S7N 5A9, Canada
基金
中国国家自然科学基金;
关键词
Single-cell sequencing technology; single-cell RNA-seq data; similarity measurement; clustering of cell types; cluster method; feature selection; TRANSCRIPTOMICS REVEALS; FATE DECISIONS; EXPRESSION; GENOME; CLASSIFICATION; DISCOVERY; IDENTIFICATION; HETEROGENEITY; POPULATIONS; DIVERSITY;
D O I
10.2174/1574893614666181120095038
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: The recently developed single-cell RNA sequencing (scRNA-seq) has attracted a great amount of attention due to its capability to interrogate expression of individual cells, which is superior to traditional bulk cell sequencing that can only measure mean gene expression of a population of cells. scRNA-seq has been successfully applied in finding new cell subtypes. New computational challenges exist in the analysis of scRNA-seq data. Objective: We provide an overview of the features of different similarity calculation and clustering methods, in order to facilitate users to select methods that are suitable for their scRNA-seq. We would also like to show that feature selection methods are important to improve clustering performance. Results: We first described similarity measurement methods, followed by reviewing some new clustering methods, as well as their algorithmic details. This analysis revealed several new questions, including how to automatically estimate the number of clustering categories, how to discover novel subpopulation, and how to search for new marker genes by using feature selection methods. Conclusion: Without prior knowledge about the number of cell types, clustering or semisupervised learning methods are important tools for exploratory analysis of scRNA-seq data.
引用
收藏
页码:314 / 322
页数:9
相关论文
共 50 条
  • [21] Clustering single-cell RNA-seq data by rank constrained similarity learning
    Mei, Qinglin
    Li, Guojun
    Su, Zhengchang
    [J]. BIOINFORMATICS, 2021, 37 (19) : 3235 - 3242
  • [22] Joint dimension reduction and clustering analysis of single-cell RNA-seq and spatial transcriptomics data
    Liu, Wei
    Liao, Xu
    Yang, Yi
    Lin, Huazhen
    Yeong, Joe
    Zhou, Xiang
    Shi, Xingjie
    Liu, Jin
    [J]. NUCLEIC ACIDS RESEARCH, 2022,
  • [23] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    [J]. GENOME BIOLOGY, 2019, 20 (1)
  • [24] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Tao Peng
    Qin Zhu
    Penghang Yin
    Kai Tan
    [J]. Genome Biology, 20
  • [25] Clustering single cells: a review of approaches on high-and low-depth single-cell RNA-seq data
    Menon, Vilas
    [J]. BRIEFINGS IN FUNCTIONAL GENOMICS, 2018, 17 (04) : 240 - 245
  • [26] An interpretable framework for clustering single-cell RNA-Seq datasets
    Jesse M. Zhang
    Jue Fan
    H. Christina Fan
    David Rosenfeld
    David N. Tse
    [J]. BMC Bioinformatics, 19
  • [27] scMAE: a masked autoencoder for single-cell RNA-seq clustering
    Fang, Zhaoyu
    Zheng, Ruiqing
    Li, Min
    [J]. BIOINFORMATICS, 2024, 40 (01)
  • [28] Single-cell RNA-seq clustering: datasets, models, and algorithms
    Peng, Lihong
    Tian, Xiongfei
    Tian, Geng
    Xu, Junlin
    Huang, Xin
    Weng, Yanbin
    Yang, Jialiang
    Zhou, Liqian
    [J]. RNA BIOLOGY, 2020, 17 (06) : 765 - 783
  • [29] Improving Single-Cell RNA-seq Clustering by Integrating Pathways
    Zhang, Chenxing
    Gao, Lin
    Wang, Bingbo
    Gao, Yong
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [30] An interpretable framework for clustering single-cell RNA-Seq datasets
    Zhang, Jesse M.
    Fan, Jue
    Fan, Christina
    Rosenfeld, David
    Tse, David N.
    [J]. BMC BIOINFORMATICS, 2018, 19