Analysis of Single-Cell RNA-seq Data by Clustering Approaches

被引:22
|
作者
Zhu, Xiaoshu [1 ,2 ,3 ]
Li, Hong-Dong [1 ]
Guo, Lilu [2 ,3 ]
Wu, Fang-Xiang [4 ,5 ]
Wang, Jianxin [1 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Yulin Normal Univ, Sch Comp Sci & Engn, Yulin 537000, Guangxi, Peoples R China
[3] Yulin Normal Univ, Guangxi Univ Key Lab Complex Syst Optimizat & Big, Yulin 537000, Guangxi, Peoples R China
[4] Univ Saskatchewan, Div Biomed Engn, Saskatoon, SK S7N 5A9, Canada
[5] Univ Saskatchewan, Dept Mech Engn, Saskatoon, SK S7N 5A9, Canada
基金
中国国家自然科学基金;
关键词
Single-cell sequencing technology; single-cell RNA-seq data; similarity measurement; clustering of cell types; cluster method; feature selection; TRANSCRIPTOMICS REVEALS; FATE DECISIONS; EXPRESSION; GENOME; CLASSIFICATION; DISCOVERY; IDENTIFICATION; HETEROGENEITY; POPULATIONS; DIVERSITY;
D O I
10.2174/1574893614666181120095038
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: The recently developed single-cell RNA sequencing (scRNA-seq) has attracted a great amount of attention due to its capability to interrogate expression of individual cells, which is superior to traditional bulk cell sequencing that can only measure mean gene expression of a population of cells. scRNA-seq has been successfully applied in finding new cell subtypes. New computational challenges exist in the analysis of scRNA-seq data. Objective: We provide an overview of the features of different similarity calculation and clustering methods, in order to facilitate users to select methods that are suitable for their scRNA-seq. We would also like to show that feature selection methods are important to improve clustering performance. Results: We first described similarity measurement methods, followed by reviewing some new clustering methods, as well as their algorithmic details. This analysis revealed several new questions, including how to automatically estimate the number of clustering categories, how to discover novel subpopulation, and how to search for new marker genes by using feature selection methods. Conclusion: Without prior knowledge about the number of cell types, clustering or semisupervised learning methods are important tools for exploratory analysis of scRNA-seq data.
引用
收藏
页码:314 / 322
页数:9
相关论文
共 50 条
  • [31] Valid Post-clustering Differential Analysis for Single-Cell RNA-Seq
    Zhang, Jesse M.
    Kamath, Govinda M.
    Tse, David N.
    [J]. CELL SYSTEMS, 2019, 9 (04) : 383 - +
  • [32] Comparison of transformations for single-cell RNA-seq data
    Constantin Ahlmann-Eltze
    Wolfgang Huber
    [J]. Nature Methods, 2023, 20 : 665 - 672
  • [33] A web server for comparative analysis of single-cell RNA-seq data
    Amir Alavi
    Matthew Ruffalo
    Aiyappa Parvangada
    Zhilin Huang
    Ziv Bar-Joseph
    [J]. Nature Communications, 9
  • [34] A web server for comparative analysis of single-cell RNA-seq data
    Alavi, Amir
    Ruffalo, Matthew
    Parvangada, Aiyappa
    Huang, Zhilin
    Bar-Joseph, Ziv
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [35] Tumor genetic analysis from single-cell RNA-seq data
    Nawy, Tal
    [J]. NATURE METHODS, 2018, 15 (07) : 571 - 571
  • [36] Single-Cell RNA-Seq Technologies and Related Computational Data Analysis
    Chen, Geng
    Ning, Baitang
    Shi, Tieliu
    [J]. FRONTIERS IN GENETICS, 2019, 10
  • [37] Practical bioinformatics pipelines for single-cell RNA-seq data analysis
    Jiangping He
    Lihui Lin
    Jiekai Chen
    [J]. Biophysics Reports, 2022, 8 (03) : 158 - 169
  • [38] Comparison of transformations for single-cell RNA-seq data
    Ahlmann-Eltze, Constantin
    Huber, Wolfgang
    [J]. NATURE METHODS, 2023, 20 (05) : 665 - +
  • [39] An Efficient and Flexible Method for Deconvoluting Bulk RNA-Seq Data with Single-Cell RNA-Seq Data
    Sun, Xifang
    Sun, Shiquan
    Yang, Sheng
    [J]. CELLS, 2019, 8 (10)
  • [40] ascend: R package for analysis of single-cell RNA-seq data
    Senabouth, Anne
    Lukowski, Samuel W.
    Hernandez, Jose Alquicira
    Andersen, Stacey B.
    Mei, Xin
    Nguyen, Quan H.
    Powell, Joseph E.
    [J]. GIGASCIENCE, 2019, 8 (08):