Synchronization of stochastic motions in swarms of active Brownian particles with global coupling

被引:4
|
作者
Ebeling, W [1 ]
机构
[1] Humboldt Univ, Inst Phys, D-10115 Berlin, Germany
来源
FLUCTUATION AND NOISE LETTERS | 2003年 / 3卷 / 02期
关键词
global interactions; active Brownian particles; synchronization; coherent motions;
D O I
10.1142/S0219477503001208
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider here the dynamics and stochastic theory of swarms of self-propelled particles. Driving is modelled by the Schienbein-Gruler expression for negative friction. Global coupling is introduced by linear forces attracting to the center of mass and to the mean velocity of the swarm. Solutions for the stationary distribution of swarms are given which represent: (i) synchronized translation of the swarm with small fluctuations around its center of mass and, (ii) synchronized rotations around the center of mass which is at rest or slowly moving.
引用
收藏
页码:L137 / L144
页数:8
相关论文
共 50 条
  • [21] H∞ filtering for stochastic singular systems with Brownian motions
    Zhao, Feng
    Zhang, Xinghui
    Xu, Hao
    [J]. 2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 1542 - 1546
  • [22] Stochastic differential equations driven by fractional Brownian motions
    Jien, Yu-Juan
    Ma, Jin
    [J]. BERNOULLI, 2009, 15 (03) : 846 - 870
  • [23] Stochastic ordering for hitting times of fractional Brownian motions
    Perez-Cendejas, Ulises
    Perez-Suarez, Gerardo
    [J]. STATISTICS & PROBABILITY LETTERS, 2024, 208
  • [24] A FORMULATION OF STOCHASTIC-PROCESSES IN BROWNIAN MOTIONS AND NOISES
    NAMIKI, M
    [J]. BULLETIN OF THE INTERNATIONAL STATISTICAL INSTITUTE, 1960, 38 (03): : 457 - 461
  • [25] CONSISTENT FAMILIES OF BROWNIAN MOTIONS AND STOCHASTIC FLOWS OF KERNELS
    Howitt, Chris
    Warren, Jon
    [J]. ANNALS OF PROBABILITY, 2009, 37 (04): : 1237 - 1272
  • [26] A COUPLING OF BROWNIAN MOTIONS IN THE L0-GEOMETRY
    Amaba, Takafumi
    Kuwada, Kazumasa
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2018, 70 (01) : 139 - 174
  • [27] Mode-coupling theory for tagged-particle motion of active Brownian particles
    Reichert, Julian
    Mandal, Suvendu
    Voigtmann, Thomas
    [J]. PHYSICAL REVIEW E, 2021, 104 (04)
  • [28] Mode-coupling theory for the steady-state dynamics of active Brownian particles
    Szamel, Grzegorz
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (12):
  • [29] Dynamics of sedimenting active Brownian particles
    Vachier, Jeremy
    Mazza, Marco G.
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2019, 42 (01):
  • [30] Dynamics of Active Brownian Particles in Plasma
    Arkar, Kyaw
    Vasiliev, Mikhail M.
    Petrov, Oleg F.
    Kononov, Evgenii A.
    Trukhachev, Fedor M.
    [J]. MOLECULES, 2021, 26 (03):