A COUPLING OF BROWNIAN MOTIONS IN THE L0-GEOMETRY

被引:0
|
作者
Amaba, Takafumi [1 ]
Kuwada, Kazumasa [2 ]
机构
[1] Fukuoka Univ, Fac Sci, Dept Appl Math, Fukuoka 8130180, Japan
[2] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
L-0-geometry; coupling of Brownian motions; approximation by geodesic random walks; RICCI FLOW; OPTIMAL TRANSPORTATION; MANIFOLDS; CURVATURE; ENTROPY; TIME;
D O I
10.2748/tmj/1520564422
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under a complete Ricci flow, we construct a coupling of two Brownian motions such that their L-0-distance is a supermartingale. This recovers a result of Lott [J. Lott, Optimal transport and Perelman's reduced volume, Calc. Var. Partial Differential Equations 36 (2009), no. 1, 49-84.] on the monotonicity of L-0-distance between heat distributions.
引用
收藏
页码:139 / 174
页数:36
相关论文
共 50 条
  • [1] Coupling of Brownian motions and Perelman's L-functional
    Kuwada, Kazumasa
    Philipowski, Robert
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (09) : 2742 - 2766
  • [2] Maximal Coupling of Euclidean Brownian Motions
    Hsu, Elton P.
    Sturm, Karl-Theodor
    [J]. COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2013, 1 (01) : 93 - 104
  • [3] Coupling of Brownian motions in Banach spaces
    Candellero, Elisabetta
    Kendall, Wilfrid S.
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23
  • [4] Brownian motions in confining geometry: A multiscale analysis
    Levitz, P
    Rodts, S
    [J]. ANNALES DE CHIMIE-SCIENCE DES MATERIAUX, 2005, 30 (04): : 345 - 352
  • [5] BROWNIAN MOTION OF POLYATOMIC MOLECULES - COUPLING OF ROTATIONAL TRANSLATION MOTIONS
    CONDIFF, DW
    DAHLER, JS
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1966, 44 (10): : 3988 - &
  • [6] Pairwise near-maximal grand coupling of Brownian motions
    Li, Cheuk Ting
    Anantharam, Venkat
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (03): : 1621 - 1639
  • [7] Scaling coupling of reflecting Brownian motions and the hot spots problem
    Pascu, MN
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (11) : 4681 - 4702
  • [8] Beta variables as times spent in [0, ∞[ by certain perturbed Brownian motions
    Carmona, P
    Petit, F
    Yor, M
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 58 : 239 - 256
  • [9] The geometry of L0
    Kalton, N. J.
    Koldobsky, A.
    Yaskin, V.
    Yaskina, M.
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2007, 59 (05): : 1029 - 1049
  • [10] Synchronization of stochastic motions in swarms of active Brownian particles with global coupling
    Ebeling, W
    [J]. FLUCTUATION AND NOISE LETTERS, 2003, 3 (02): : L137 - L144