Scaling coupling of reflecting Brownian motions and the hot spots problem

被引:34
|
作者
Pascu, MN [1 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
关键词
coupling of diffusions; reflecting Brownian motion; hot spots conjecture; eigenfunctions; Neumann problem; Laplacian;
D O I
10.1090/S0002-9947-02-03020-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new type of coupling of reflecting Brownian motions in smooth planar domains, called scaling coupling. We apply this to obtain monotonicity properties of antisymmetrc second Neumann eigenfunctions of convex planar domains with one line of symmetry. In particular, this gives the proof of the hot spots conjecture for some known types of domains and some new ones.
引用
收藏
页码:4681 / 4702
页数:22
相关论文
共 50 条
  • [1] Fiber Brownian motion and the "hot spots" problem
    Bass, RF
    Burdzy, K
    [J]. DUKE MATHEMATICAL JOURNAL, 2000, 105 (01) : 25 - 58
  • [2] A NOTE ON REFLECTING BROWNIAN MOTIONS
    Soucaliuc, Florin
    Werner, Wendelin
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2002, 7 : 117 - 122
  • [3] Brownian motion with killing and reflection and the ‘‘hot–spots’’ problem
    Rodrigo Banuelos
    Michael Pang
    Mihai Pascu
    [J]. Probability Theory and Related Fields, 2004, 130 : 56 - 68
  • [4] Brownian motion with killing and reflection and the ''hot-spots'' problem
    Bañuelos, R
    Pang, M
    Pascu, M
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2004, 130 (01) : 56 - 68
  • [5] WEAK CONVERGENCE OF REFLECTING BROWNIAN MOTIONS
    Burdzy, Krzysztof
    Chen, Zhen-Qing
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 1998, 3 : 29 - 33
  • [6] Boundary trace of reflecting Brownian motions
    Benjamini, I
    Chen, ZQ
    Rohde, S
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2004, 129 (01) : 1 - 17
  • [7] FILTERING OF ABSORBING AND REFLECTING BROWNIAN MOTIONS
    BANEK, T
    [J]. SYSTEMS & CONTROL LETTERS, 1986, 8 (02) : 153 - 159
  • [8] Boundary trace of reflecting Brownian motions
    Itai Benjamini
    Zhen-Qing Chen
    Steffen Rohde
    [J]. Probability Theory and Related Fields, 2004, 129 : 1 - 17
  • [9] A BOUNDARY PROPERTY OF SEMIMARTINGALE REFLECTING BROWNIAN MOTIONS
    REIMAN, MI
    WILLIAMS, RJ
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1988, 77 (01) : 87 - 97
  • [10] LYAPUNOV FUNCTIONS FOR SEMIMARTINGALE REFLECTING BROWNIAN MOTIONS
    DUPUIS, P
    WILLIAMS, RJ
    [J]. ANNALS OF PROBABILITY, 1994, 22 (02): : 680 - 702