Boundary trace of reflecting Brownian motions

被引:12
|
作者
Benjamini, I [1 ]
Chen, ZQ
Rohde, S
机构
[1] Weizmann Inst Sci, IL-76100 Rehovot, Israel
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
reflecting Brownian motion; Hausdorff dimension; uniform dimensional result; boundary occupation time; boundary trace; conformal mapping;
D O I
10.1007/s00440-003-0318-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish a uniform dimensional result for normally reflected Brownian motion (RBM) in a large class of non-smooth domains. Hausdorff dimensions for the boundary occupation time and the boundary trace of RBM are determined. Extensions to stable-like jump processes and to symmetric reflecting diffusions are also given.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [1] Boundary trace of reflecting Brownian motions
    Itai Benjamini
    Zhen-Qing Chen
    Steffen Rohde
    [J]. Probability Theory and Related Fields, 2004, 129 : 1 - 17
  • [2] A BOUNDARY PROPERTY OF SEMIMARTINGALE REFLECTING BROWNIAN MOTIONS
    REIMAN, MI
    WILLIAMS, RJ
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1988, 77 (01) : 87 - 97
  • [3] A NOTE ON REFLECTING BROWNIAN MOTIONS
    Soucaliuc, Florin
    Werner, Wendelin
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2002, 7 : 117 - 122
  • [4] WEAK CONVERGENCE OF REFLECTING BROWNIAN MOTIONS
    Burdzy, Krzysztof
    Chen, Zhen-Qing
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 1998, 3 : 29 - 33
  • [5] FILTERING OF ABSORBING AND REFLECTING BROWNIAN MOTIONS
    BANEK, T
    [J]. SYSTEMS & CONTROL LETTERS, 1986, 8 (02) : 153 - 159
  • [6] LYAPUNOV FUNCTIONS FOR SEMIMARTINGALE REFLECTING BROWNIAN MOTIONS
    DUPUIS, P
    WILLIAMS, RJ
    [J]. ANNALS OF PROBABILITY, 1994, 22 (02): : 680 - 702
  • [7] EXISTENCE AND UNIQUENESS OF SEMIMARTINGALE REFLECTING BROWNIAN MOTIONS IN AN ORTHANT
    TAYLOR, LM
    WILLIAMS, RJ
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1993, 96 (03) : 283 - 317
  • [8] On unique extension of time changed reflecting Brownian motions
    Chen, Zhen-Qing
    Fukushima, Masatoshi
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (03): : 864 - 875
  • [9] Reflecting diffusions and hyperbolic Brownian motions in multidimensional spheres
    Olga Aryasova
    Alessandro De Gregorio
    Enzo Orsingher
    [J]. Lithuanian Mathematical Journal, 2013, 53 : 241 - 263
  • [10] An invariance principle for semimartingale reflecting Brownian motions in an orthant
    Williams, RJ
    [J]. QUEUEING SYSTEMS, 1998, 30 (1-2) : 5 - 25