Anisotropic grid adaptation for Navier-Stokes' equations

被引:4
|
作者
Ferm, L [1 ]
Lötstedt, P [1 ]
机构
[1] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
关键词
Finite volume method; anisotropic grid refinement; error equation; viscous flow;
D O I
10.1016/S0021-9991(03)00250-X
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Navier-Stokes' equations are discretized in space by a finite volume method. Error equations are derived which are approximately satisfied by the errors in the solution. The dependence of the solution errors on the discretization errors is analyzed in certain flow cases. The grid is adapted based on the estimated discretization errors. The refinement and coarsening of the grid are anisotropic in the sense that it is different in different directions in the computational domain. The adaptation algorithm is applied to laminar, viscous flow over a flat plate, in a channel with a bump, and around a cylinder and an airfoil. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:22 / 41
页数:20
相关论文
共 50 条
  • [31] NAVIER-STOKES AND STOCHASTIC NAVIER-STOKES EQUATIONS VIA LAGRANGE MULTIPLIERS
    Cruzeiro, Ana Bela
    JOURNAL OF GEOMETRIC MECHANICS, 2019, 11 (04): : 553 - 560
  • [32] Recasting Navier-Stokes equations
    Reddy, M. H. Lakshminarayana
    Dadzie, S. Kokou
    Ocone, Raffaella
    Borg, Matthew K.
    Reese, Jason M.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (10):
  • [33] NAVIER-STOKES EQUATIONS ON THE β-PLANE
    Al-Jaboori, Mustafa A. H.
    Wirosoetisno, Djoko
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (03): : 687 - 701
  • [34] TRANSFORMATION OF NAVIER-STOKES EQUATIONS
    ROGERS, DF
    GRANGER, RA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (11): : 1331 - &
  • [35] FLUCTUATIONS IN NAVIER-STOKES EQUATIONS
    PAPANICOLAOU, GC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A236 - A236
  • [36] NAVIER-STOKES EQUATIONS PARADOX
    Ramm, Alexander G.
    REPORTS ON MATHEMATICAL PHYSICS, 2021, 88 (01) : 41 - 45
  • [37] STOCHASTIC NAVIER-STOKES EQUATIONS
    CAPINSKI, M
    CUTLAND, N
    ACTA APPLICANDAE MATHEMATICAE, 1991, 25 (01) : 59 - 85
  • [38] FRACTIONAL NAVIER-STOKES EQUATIONS
    Cholewa, Jan W.
    Dlotko, Tomasz
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (08): : 2967 - 2988
  • [39] Euler and Navier-Stokes equations
    Constantin, Peter
    PUBLICACIONS MATEMATIQUES, 2008, 52 (02) : 235 - 265
  • [40] On the Navier-Stokes equations on surfaces
    Pruess, Jan
    Simonett, Gieri
    Wilke, Mathias
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (03) : 3153 - 3179