Anisotropic grid adaptation for Navier-Stokes' equations

被引:4
|
作者
Ferm, L [1 ]
Lötstedt, P [1 ]
机构
[1] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
关键词
Finite volume method; anisotropic grid refinement; error equation; viscous flow;
D O I
10.1016/S0021-9991(03)00250-X
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Navier-Stokes' equations are discretized in space by a finite volume method. Error equations are derived which are approximately satisfied by the errors in the solution. The dependence of the solution errors on the discretization errors is analyzed in certain flow cases. The grid is adapted based on the estimated discretization errors. The refinement and coarsening of the grid are anisotropic in the sense that it is different in different directions in the computational domain. The adaptation algorithm is applied to laminar, viscous flow over a flat plate, in a channel with a bump, and around a cylinder and an airfoil. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:22 / 41
页数:20
相关论文
共 50 条
  • [21] Solution of Navier-Stokes equations on nonstaggered grid at all speeds
    Date, AW
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 1998, 33 (04) : 451 - 467
  • [22] A SPECTRAL METHOD WITH STAGGERED GRID FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    MONTIGNYRANNOU, F
    MORCHOISNE, Y
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1987, 7 (02) : 175 - 189
  • [23] On solution of Navier-Stokes auxiliary grid equations for incompressible fluids
    Danaev, N. T.
    Computational Science and High Performance Computing II, 2006, 91 : 55 - 65
  • [24] Grid influence on upwind schemes for the Euler and Navier-Stokes equations
    Zhang, XD
    Trepanier, JY
    Reggio, M
    Benmeddour, A
    Camarero, R
    AIAA JOURNAL, 1996, 34 (04) : 717 - 727
  • [25] GRID SIZE DEPENDENCE ON CONVERGENCE FOR COMPUTATION OF THE NAVIER-STOKES EQUATIONS
    MOON, YJ
    AIAA JOURNAL, 1986, 24 (10) : 1705 - 1706
  • [26] Compact scheme on a nonuniform grid for the Ψ-ω-system of Navier-Stokes equations
    Paasonen, VI
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2001, 16 (01) : 77 - 85
  • [27] An adaptive cartesian grid method for the incompressible navier-stokes equations
    Luo, Xilian
    Gu, Zhaolin
    Lei, Kangbin
    Kase, Kiwamu
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2009, 43 (11): : 11 - 17
  • [28] SINGLE-GRID SPECTRAL COLLOCATION FOR THE NAVIER-STOKES EQUATIONS
    BERNARDI, C
    CANUTO, C
    MADAY, Y
    METIVET, B
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1990, 10 (02) : 253 - 297
  • [29] Stokes and Navier-Stokes equations with Navier boundary condition
    Acevedo, Paul
    Amrouche, Cherif
    Conca, Carlos
    Ghosh, Amrita
    COMPTES RENDUS MATHEMATIQUE, 2019, 357 (02) : 115 - 119
  • [30] Stokes and Navier-Stokes equations with Navier boundary conditions
    Acevedo Tapia, P.
    Amrouche, C.
    Conca, C.
    Ghosh, A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 285 : 258 - 320