NAVIER-STOKES EQUATIONS ON THE β-PLANE

被引:8
|
作者
Al-Jaboori, Mustafa A. H. [1 ]
Wirosoetisno, Djoko [1 ]
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
来源
关键词
Navier-Stokes equations; beta plane; global attractor;
D O I
10.3934/dcdsb.2011.16.687
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that, given a sufficiently regular forcing, the solution of the two-dimensional Navier-Stokes equations on the periodic beta-plane (i.e. with the Coriolis force varying as f(0) + beta(y)) will become nearly zonal: with the vorticity omega(x, y, t) = (omega) over bar (y, t) + (omega) over tilde (x, y, t), one has vertical bar(omega) over tilde vertical bar(2)(Hs) <= beta(-1) M-s(...) as t -> infinity. We use this show that, for sufficiently large beta, the global attractor of this system reduces to a point.
引用
收藏
页码:687 / 701
页数:15
相关论文
共 50 条
  • [1] On discrete Stokes and Navier-Stokes equations in the plane
    Gürlebeck, K
    Hommel, A
    [J]. CLIFFORD ALGEBRAS: APPLICATIONS TO MATHEMATICS, PHYSICS, AND ENGINEERING, 2004, 34 : 35 - 58
  • [2] Euler and Navier-Stokes equations on the hyperbolic plane
    Khesin, Boris
    Misiolek, Gerard
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (45) : 18324 - 18326
  • [3] Navier-Stokes equations on the β-plane: Determining modes and nodes
    Miyajima, N.
    Wirosoetisno, D.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2019, 386 : 31 - 37
  • [4] On the Stationary Navier-Stokes Equations in the Half-Plane
    Guillod, Julien
    Wittwer, Peter
    [J]. ANNALES HENRI POINCARE, 2016, 17 (11): : 3287 - 3319
  • [5] Navier-stokes equations with navier boundary conditions for a bounded domain in the plane
    Kelliher, James P.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (01) : 210 - 232
  • [6] Inverse Boundary Value Problem for the Stokes and the Navier-Stokes Equations in the Plane
    Lai, Ru-Yu
    Uhlmann, Gunther
    Wang, Jenn-Nan
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (03) : 811 - 829
  • [7] NAVIER-STOKES EQUATIONS
    STUART, CA
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1971, 22 (86): : 309 - &
  • [8] Convergence of the relaxed compressible Navier-Stokes equations to the incompressible Navier-Stokes equations
    Ju, Qiangchang
    Wang, Zhao
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 141
  • [9] Stokes and Navier-Stokes equations with Navier boundary condition
    Acevedo, Paul
    Amrouche, Cherif
    Conca, Carlos
    Ghosh, Amrita
    [J]. COMPTES RENDUS MATHEMATIQUE, 2019, 357 (02) : 115 - 119
  • [10] On the decay of infinite energy solutions to the Navier-Stokes equations in the plane
    Bjorland, Clayton
    Niche, Cesar J.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (07) : 670 - 674