Direct measurement and modelling of internal strains in ion-implanted diamond

被引:27
|
作者
Bosia, F. [1 ,2 ,3 ]
Argiolas, N. [3 ,4 ]
Bazzan, M. [3 ,4 ]
Fairchild, B. A. [5 ]
Greentree, A. D. [6 ]
Lau, D. W. M. [5 ]
Olivero, P. [1 ,2 ,3 ]
Picollo, F. [1 ,2 ,3 ]
Rubanov, S. [5 ]
Prawer, S. [5 ]
机构
[1] Univ Turin, Dept Phys, NIS Ctr Excellence, I-10124 Turin, Italy
[2] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy
[3] Consorzio Nazl Interuniv Sci Fis Materia CNISM, Santa Maria Imbaro, Italy
[4] Univ Padua, Dept Phys & Astron, I-35100 Padua, Italy
[5] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia
[6] RMIT Univ, Sch Appl Sci, Melbourne, Vic 3001, Australia
基金
澳大利亚研究理事会;
关键词
DAMAGE; AMORPHIZATION; FABRICATION; SURFACE; LAYERS;
D O I
10.1088/0953-8984/25/38/385403
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We present a phenomenological model and finite element simulations to describe the depth variation of mass density and strain of ion-implanted single-crystal diamond. Several experiments are employed to validate the approach: firstly, samples implanted with 180 keV B ions at relatively low fluences are characterized using high-resolution x-ray diffraction; secondly, the mass density variation of a sample implanted with 500 keV He ions, well above its amorphization threshold, is characterized with electron energy loss spectroscopy. At high damage densities, the experimental depth profiles of strain and density display a saturation effect with increasing damage and a shift of the damage density peak towards greater depth values with respect to those predicted by TRIM simulations, which are well accounted for in the model presented here. The model is then further validated by comparing transmission electron microscopy-measured and simulated thickness values of a buried amorphous carbon layer formed at different depths by implantation of 500 keV He ions through a variable-thickness mask to simulate the simultaneous implantation of ions at different energies.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] CONDUCTION IN ION-IMPLANTED SINGLE-CRYSTAL DIAMOND
    HUNN, JD
    PARIKH, NR
    SWANSON, ML
    ZUHR, RA
    DIAMOND AND RELATED MATERIALS, 1993, 2 (5-7) : 847 - 851
  • [32] Conduction in ion-implanted single-crystal diamond
    Hunn, J.D.
    Parikh, N.R.
    Swanson, M.L.
    Zuhr, R.A.
    Diamond and Related Materials, 1993, 2 (5 -7 pt 2) : 847 - 851
  • [33] Optical studies of graphitized layers in ion-implanted diamond
    Khmelnitskiy, R.A.
    Dravin, V.A.
    Gippius, A.A.
    Journal of Wide Bandgap Materials, 1996, 5 (02): : 121 - 125
  • [34] MOSSBAUER STUDY OF THE AMORPHOUS LAYER IN ION-IMPLANTED DIAMOND
    VANROSSUM, M
    LANGOUCHE, G
    DEBRUYN, J
    DEPOTTER, M
    COUSSEMENT, R
    NUCLEAR INSTRUMENTS & METHODS, 1981, 182 (APR): : 407 - 411
  • [35] Characterization and mechanical properties of ion-implanted diamond surfaces
    Stock, HR
    Schlett, V
    Kohlscheen, J
    Mayr, P
    SURFACE & COATINGS TECHNOLOGY, 2001, 146 : 425 - 429
  • [36] Formation and characterization of graphitized layers in ion-implanted diamond
    Gippius, AA
    Khmelnitskiy, RA
    Dravin, VA
    Tkachenko, SD
    DIAMOND AND RELATED MATERIALS, 1999, 8 (8-9) : 1631 - 1634
  • [37] THE DIRECT SENSING OF DAMAGE TO ION-IMPLANTED MATERIALS
    MCKEE, JSC
    MATHUR, MS
    SMITH, GR
    SCANNING MICROSCOPY, 1993, 7 (04) : 1173 - 1179
  • [38] TRANSIENT TRANSPORT MEASUREMENT ON ION-IMPLANTED POLYMERS
    WASSERMAN, B
    DRESSELHAUS, MS
    WOLF, M
    WNEK, GE
    WOODHOUSE, JD
    JOURNAL OF APPLIED PHYSICS, 1986, 60 (02) : 668 - 672
  • [39] VICKERS HARDNESS MEASUREMENT OF ION-IMPLANTED MGO
    AOKI, Y
    RUCK, DM
    VOGT, D
    LEIBLE, K
    KHUBEIS, I
    MEYER, O
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1994, 91 (1-4): : 247 - 251
  • [40] Surface Brillouin scattering on annealed ion-implanted CVD diamond
    Motochi, I.
    Naidoo, S. R.
    Mathe, B. A.
    Erasmus, R.
    Aradi, E.
    Derry, T. E.
    Olivier, E. J.
    DIAMOND AND RELATED MATERIALS, 2015, 56 : 6 - 12