Direct measurement and modelling of internal strains in ion-implanted diamond

被引:27
|
作者
Bosia, F. [1 ,2 ,3 ]
Argiolas, N. [3 ,4 ]
Bazzan, M. [3 ,4 ]
Fairchild, B. A. [5 ]
Greentree, A. D. [6 ]
Lau, D. W. M. [5 ]
Olivero, P. [1 ,2 ,3 ]
Picollo, F. [1 ,2 ,3 ]
Rubanov, S. [5 ]
Prawer, S. [5 ]
机构
[1] Univ Turin, Dept Phys, NIS Ctr Excellence, I-10124 Turin, Italy
[2] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy
[3] Consorzio Nazl Interuniv Sci Fis Materia CNISM, Santa Maria Imbaro, Italy
[4] Univ Padua, Dept Phys & Astron, I-35100 Padua, Italy
[5] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia
[6] RMIT Univ, Sch Appl Sci, Melbourne, Vic 3001, Australia
基金
澳大利亚研究理事会;
关键词
DAMAGE; AMORPHIZATION; FABRICATION; SURFACE; LAYERS;
D O I
10.1088/0953-8984/25/38/385403
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We present a phenomenological model and finite element simulations to describe the depth variation of mass density and strain of ion-implanted single-crystal diamond. Several experiments are employed to validate the approach: firstly, samples implanted with 180 keV B ions at relatively low fluences are characterized using high-resolution x-ray diffraction; secondly, the mass density variation of a sample implanted with 500 keV He ions, well above its amorphization threshold, is characterized with electron energy loss spectroscopy. At high damage densities, the experimental depth profiles of strain and density display a saturation effect with increasing damage and a shift of the damage density peak towards greater depth values with respect to those predicted by TRIM simulations, which are well accounted for in the model presented here. The model is then further validated by comparing transmission electron microscopy-measured and simulated thickness values of a buried amorphous carbon layer formed at different depths by implantation of 500 keV He ions through a variable-thickness mask to simulate the simultaneous implantation of ions at different energies.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] THE INTERNAL-FRICTION OF ION-IMPLANTED NIOBIUM
    BULMER, TR
    MIODOWNIK, AP
    MATERIALS SCIENCE AND ENGINEERING, 1985, 69 (02): : 429 - 433
  • [22] BIPOLAR-TRANSISTOR ACTION IN ION-IMPLANTED DIAMOND
    PRINS, JF
    APPLIED PHYSICS LETTERS, 1982, 41 (10) : 950 - 952
  • [23] Non-destructive characterization of ion-implanted diamond
    Ma, ZQ
    Liu, BX
    Naramoto, H
    Aoki, Y
    Yamamoto, S
    Takeshita, H
    Goppelt-Langer, PC
    VACUUM, 1999, 55 (3-4) : 207 - 217
  • [24] Lattice sites of ion-implanted Cu atoms in diamond
    Bharuth-Ram, K
    Wahl, U
    Correia, JG
    PHYSICA B-CONDENSED MATTER, 2003, 340 : 89 - 93
  • [25] Defect control and defect engineering in ion-implanted diamond
    Gippius, AA
    ICDS-18 - PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON DEFECTS IN SEMICONDUCTORS, PTS 1-4, 1995, 196- : 85 - 89
  • [26] STUDY OF ION-IMPLANTED DIAMOND BY CATHODE LUMINESCENCE.
    Zaitsev, A.M.
    Soviet Physics - Lebedev Institute Reports (English translation of Kratkie Soobshcheniya po Fizike: Sbornik, AN SSSR, Fizicheskii Inst. im. P.N. Lebedeva), 1979, (12): : 9 - 13
  • [27] ION-IMPLANTED DIAMOND TIP FOR A SCANNING TUNNELING MICROSCOPE
    KANEKO, R
    OGUCHI, S
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 1990, 29 (09): : 1854 - 1855
  • [28] The nature of ion-implanted contacts to polycrystalline diamond films
    Avigal, Y
    Richter, V
    Fizgeer, B
    Saguy, C
    Kalish, R
    DIAMOND AND RELATED MATERIALS, 2004, 13 (09) : 1674 - 1679
  • [29] MOSSBAUER STUDY OF THE AMORPHIZATION PROCESS IN ION-IMPLANTED DIAMOND
    DEPOTTER, M
    LANGOUCHE, G
    HYPERFINE INTERACTIONS, 1983, 15 (1-4): : 479 - 482
  • [30] Defect control and defect engineering in ion-implanted diamond
    Gippius, A.A.
    Materials Science Forum, 1995, 196-201 (pt 1): : 85 - 90