Limit theorems for critical first-passage percolation on the triangular lattice

被引:9
|
作者
Yao, Chang-Long [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Critical percolation; First-passage percolation; Scaling limit; Conformal loop ensemble; Law of large numbers; Central limit theorem; EXPONENTS;
D O I
10.1016/j.spa.2017.05.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider (independent) first-passage percolation on the sites of the triangular lattice T embedded in C. Denote the passage time of the site v in T by t(v), and assume that P(t(v) = 0) = P(t(v) = 1) = 1/2. Denote by b(0,n) the passage time from 0 to the halfplane {v is an element of T : Re(v) >= n}, and by T(0, nu) the passage time from 0 to the nearest site to nu, where vertical bar u vertical bar = 1. We prove that as n -> infinity, b(0,n)/ log n -> 1/(2 root 3 pi) a.s., E[b(0,n)]/ log n -> 1/(2 root 3 pi) and Var[b(0,n)]/ log -> n 2/(3 root 3 pi) - 1/(2 pi(2)); T(0, nu)/ log n -> 1/(root 3 pi) in probability but not a.s., E[T (0, nu)]/ log n -> 1/(root 3 pi) and Var[T(0, nu)]/ log n -> 4/(3 root 3 pi) - 1/pi(2). This answers a question of Kesten and Zhang (1997) and improves our previous work (2014). From this result, we derive an explicit form of the central limit theorem for b(0,n) and T (0, nu). A key ingredient for the proof is the moment generating function of the conformal radii for conformal loop ensemble CLE6, given by Schramm et al. (2009). (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:445 / 460
页数:16
相关论文
共 50 条
  • [41] Superlinearity of Geodesic Length in 2D Critical First-Passage Percolation
    Damron, Michael
    Tang, Pengfei
    SOJOURNS IN PROBABILITY THEORY AND STATISTICAL PHYSICS - II: BROWNIAN WEB AND PERCOLATION, A FESTSCHRIFT FOR CHARLES M. NEWMAN, 2019, 299 : 101 - 122
  • [42] Local Neighbourhoods for First-Passage Percolation on the Configuration Model
    Dereich, Steffen
    Ortgiese, Marcel
    JOURNAL OF STATISTICAL PHYSICS, 2018, 173 (3-4) : 485 - 501
  • [43] Nonhomogeneous Euclidean first-passage percolation and distance learning
    Groisman, Pablo
    Jonckheere, Matthieu
    Sapienza, Facundo
    BERNOULLI, 2022, 28 (01) : 255 - 276
  • [44] Differentiability at the edge of the percolation cone and related results in first-passage percolation
    Auffinger, Antonio
    Damron, Michael
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 156 (1-2) : 193 - 227
  • [45] Differentiability at the edge of the percolation cone and related results in first-passage percolation
    Antonio Auffinger
    Michael Damron
    Probability Theory and Related Fields, 2013, 156 : 193 - 227
  • [46] Differentiability and monotonicity of expected passage time in Euclidean first-passage percolation
    Howard, CD
    JOURNAL OF APPLIED PROBABILITY, 2001, 38 (04) : 815 - 827
  • [47] Geodesics in first-passage percolation cross any pattern
    Jacquet, Antonin
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [48] Transitions for exceptional times in dynamical first-passage percolation
    Damron, Michael
    Hanson, Jack
    Harper, David
    Lam, Wai-Kit
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 39 (03): : 499 - 502
  • [49] Geodesics in two-dimensional first-passage percolation
    Licea, C
    Newman, CM
    ANNALS OF PROBABILITY, 1996, 24 (01): : 399 - 410
  • [50] Sublinear variance in first-passage percolation for general distributions
    Damron, Michael
    Hanson, Jack
    Sosoe, Philippe
    PROBABILITY THEORY AND RELATED FIELDS, 2015, 163 (1-2) : 223 - 258