Limit theorems for critical first-passage percolation on the triangular lattice

被引:9
|
作者
Yao, Chang-Long [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Critical percolation; First-passage percolation; Scaling limit; Conformal loop ensemble; Law of large numbers; Central limit theorem; EXPONENTS;
D O I
10.1016/j.spa.2017.05.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider (independent) first-passage percolation on the sites of the triangular lattice T embedded in C. Denote the passage time of the site v in T by t(v), and assume that P(t(v) = 0) = P(t(v) = 1) = 1/2. Denote by b(0,n) the passage time from 0 to the halfplane {v is an element of T : Re(v) >= n}, and by T(0, nu) the passage time from 0 to the nearest site to nu, where vertical bar u vertical bar = 1. We prove that as n -> infinity, b(0,n)/ log n -> 1/(2 root 3 pi) a.s., E[b(0,n)]/ log n -> 1/(2 root 3 pi) and Var[b(0,n)]/ log -> n 2/(3 root 3 pi) - 1/(2 pi(2)); T(0, nu)/ log n -> 1/(root 3 pi) in probability but not a.s., E[T (0, nu)]/ log n -> 1/(root 3 pi) and Var[T(0, nu)]/ log n -> 4/(3 root 3 pi) - 1/pi(2). This answers a question of Kesten and Zhang (1997) and improves our previous work (2014). From this result, we derive an explicit form of the central limit theorem for b(0,n) and T (0, nu). A key ingredient for the proof is the moment generating function of the conformal radii for conformal loop ensemble CLE6, given by Schramm et al. (2009). (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:445 / 460
页数:16
相关论文
共 50 条
  • [31] Nondifferentiability of the time constants of first-passage percolation
    Steele, JM
    Zhang, Y
    ANNALS OF PROBABILITY, 2003, 31 (02): : 1028 - 1051
  • [32] First-passage percolation on random simple triangulations
    Stufler, Benedikt
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 21 : 129 - 178
  • [33] A shape theorem for Riemannian first-passage percolation
    LaGatta, T.
    Wehr, J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (05)
  • [34] First-Passage Percolation with Exponential Times on a Ladder
    Renlund, Henrik
    COMBINATORICS PROBABILITY & COMPUTING, 2010, 19 (04): : 593 - 601
  • [35] FIRST-PASSAGE PERCOLATION ON CARTESIAN POWER GRAPHS
    Martinsson, Anders
    ANNALS OF PROBABILITY, 2018, 46 (02): : 1004 - 1041
  • [36] Sublinear variance in Euclidean first-passage percolation
    Bernstein, Megan
    Damron, Michael
    Greenwood, Torin
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (08) : 5060 - 5099
  • [37] Batch queues, reversibility and first-passage percolation
    Martin, James B.
    QUEUEING SYSTEMS, 2009, 62 (04) : 411 - 427
  • [38] Batch queues, reversibility and first-passage percolation
    James B. Martin
    Queueing Systems, 2009, 62 : 411 - 427
  • [39] Entropy reduction in Euclidean first-passage percolation
    Damron, Michael
    Wang, Xuan
    ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
  • [40] UNIVERSALITY OF THE TIME CONSTANT FOR 2D CRITICAL FIRST-PASSAGE PERCOLATION
    Damron, Michael
    Hanson, Jack
    Lam, Wai -Kit
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (03): : 1701 - 1731