Sublinear variance in first-passage percolation for general distributions

被引:17
|
作者
Damron, Michael [1 ]
Hanson, Jack [2 ]
Sosoe, Philippe [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Primary; 60K35; Secondary; 60E15;
D O I
10.1007/s00440-014-0591-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that the variance of the passage time from the origin to a point in first-passage percolation on is sublinear in the distance to when , obeying the bound , under minimal assumptions on the edge-weight distribution. The proof applies equally to absolutely continuous, discrete and singular continuous distributions and mixtures thereof, and requires only moments. The main result extends work of Benjamini-Kalai-Schramm (Ann Prob 31, 2003) and Benaim-Rossignol (Ann Inst Henri Poincar, Prob Stat 3, 2008).
引用
收藏
页码:223 / 258
页数:36
相关论文
共 50 条
  • [1] Sublinear variance in first-passage percolation for general distributions
    Michael Damron
    Jack Hanson
    Philippe Sosoe
    [J]. Probability Theory and Related Fields, 2015, 163 : 223 - 258
  • [2] Sublinear variance in Euclidean first-passage percolation
    Bernstein, Megan
    Damron, Michael
    Greenwood, Torin
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (08) : 5060 - 5099
  • [3] Lower bounds for fluctuations in first-passage percolation for general distributions
    Damron, Michael
    Hanson, Jack
    Houdre, Christian
    Xu, Chen
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (02): : 1336 - 1357
  • [4] Divergence of shape fluctuation for general distributions in first-passage percolation
    Nakajima, Shuta
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (02): : 782 - 791
  • [5] First passage percolation has sublinear distance variance
    Benjamini, I
    Kalai, G
    Schramm, O
    [J]. ANNALS OF PROBABILITY, 2003, 31 (04): : 1970 - 1978
  • [6] First-passage percolation
    Kesten, H
    [J]. FROM CLASSICAL TO MODERN PROBABILITY, 2003, 54 : 93 - 143
  • [7] FIRST-PASSAGE PERCOLATION
    HAMMERSLEY, JM
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1966, 28 (03) : 491 - +
  • [8] Bigeodesics in First-Passage Percolation
    Damron, Michael
    Hanson, Jack
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 349 (02) : 753 - 776
  • [9] Monotonicity in first-passage percolation
    Gouere, Jean-Baptiste
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2014, 11 (02): : 565 - 569
  • [10] Superdiffusivity in first-passage percolation
    Licea, C
    Newman, CM
    Piza, MST
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1996, 106 (04) : 559 - 591