Sublinear variance in first-passage percolation for general distributions

被引:17
|
作者
Damron, Michael [1 ]
Hanson, Jack [2 ]
Sosoe, Philippe [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Primary; 60K35; Secondary; 60E15;
D O I
10.1007/s00440-014-0591-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that the variance of the passage time from the origin to a point in first-passage percolation on is sublinear in the distance to when , obeying the bound , under minimal assumptions on the edge-weight distribution. The proof applies equally to absolutely continuous, discrete and singular continuous distributions and mixtures thereof, and requires only moments. The main result extends work of Benjamini-Kalai-Schramm (Ann Prob 31, 2003) and Benaim-Rossignol (Ann Inst Henri Poincar, Prob Stat 3, 2008).
引用
收藏
页码:223 / 258
页数:36
相关论文
共 50 条