Lang's height conjecture and Szpiro's conjecture

被引:0
|
作者
Silverman, Joseph H. [1 ]
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
来源
基金
美国国家科学基金会;
关键词
elliptic curve; canonical height; Szpiro conjecture; Lang conjecture;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that Szpiro's conjecture, or equivalently the ABC-conjecture, implies Lang's conjecture giving a uniform lower bound for the canonical height of nontorsion points on elliptic curves. In this note we show that a significantly weaker version of Szpiro's conjecture, which we call "prime-depleted," suffices to prove Lang's conjecture.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [41] On S Chowla's conjecture
    Levesque, C
    Lu, H
    ACTA MATHEMATICA HUNGARICA, 1996, 70 (03) : 237 - 246
  • [42] CONJECTURE OF S CHOWLA,S
    SURYANARAYANA, D
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A62 - A62
  • [43] π-forms of Brauer's k(B)-conjecture and Olsson's Conjecture
    Liu, Yanjun
    ALGEBRAS AND REPRESENTATION THEORY, 2011, 14 (02) : 213 - 215
  • [44] Baker’s conjecture and Eremenko’s conjecture for functions with negative zeros
    P. J. Rippon
    G. M. Stallard
    Journal d'Analyse Mathématique, 2013, 120 : 291 - 309
  • [45] π-forms of Brauer’s k(B)—conjecture and Olsson’s Conjecture
    Yanjun Liu
    Algebras and Representation Theory, 2011, 14 : 213 - 215
  • [46] Baker's conjecture and Eremenko's conjecture for functions with negative zeros
    Rippon, P. J.
    Stallard, G. M.
    JOURNAL D ANALYSE MATHEMATIQUE, 2013, 120 : 291 - 309
  • [47] On a Conjecture of Shapiro's
    陈志国
    Chinese Quarterly Journal of Mathematics, 1994, (02) : 37 - 39
  • [48] On Sendov's Conjecture
    Sofi, G. M.
    Shah, W. M.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (01) : 493 - 497
  • [49] On Christensen's conjecture
    A. K. Gupta
    T. Nguyen
    L. Pardo
    Statistical Papers, 2007, 48 : 523 - 523
  • [50] On Pawley's conjecture
    Kuiper, Koenraad
    YEARBOOK OF PHRASEOLOGY, 2015, 6 (01) : 125 - 130