Lang's height conjecture and Szpiro's conjecture

被引:0
|
作者
Silverman, Joseph H. [1 ]
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
来源
基金
美国国家科学基金会;
关键词
elliptic curve; canonical height; Szpiro conjecture; Lang conjecture;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that Szpiro's conjecture, or equivalently the ABC-conjecture, implies Lang's conjecture giving a uniform lower bound for the canonical height of nontorsion points on elliptic curves. In this note we show that a significantly weaker version of Szpiro's conjecture, which we call "prime-depleted," suffices to prove Lang's conjecture.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [21] On Lang's conjecture for some product-quotient surfaces
    Grivaux, Julien
    Velasquez, Juliana Restrepo
    Rousseau, Erwan
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2018, 18 (04) : 1483 - 1501
  • [22] Greenberg's conjecture and Leopoldt's conjecture
    Kubotera, N
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2000, 76 (07) : 108 - 110
  • [23] SERGE LANG CONJECTURE
    LIARDET, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 279 (12): : 435 - 437
  • [24] Bounds in a Lang conjecture
    Rémond, G
    INVENTIONES MATHEMATICAE, 2000, 142 (03) : 513 - 545
  • [25] Brauer's Height Zero Conjecture for principal blocks
    Malle, Gunter
    Navarro, Gabriel
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 778 : 119 - 125
  • [26] Brauer’s height zero conjecture for two primes
    Gunter Malle
    Gabriel Navarro
    Mathematische Zeitschrift, 2020, 295 : 1723 - 1732
  • [27] Brauer's height zero conjecture for two primes
    Malle, Gunter
    Navarro, Gabriel
    MATHEMATISCHE ZEITSCHRIFT, 2020, 295 (3-4) : 1723 - 1732
  • [28] From Schanuel's Conjecture to Shapiro's Conjecture
    D'Aquino, Paola
    Macintyre, Angus
    Terzo, Giuseppina
    COMMENTARII MATHEMATICI HELVETICI, 2014, 89 (03) : 597 - 616
  • [29] Level structures on Abelian varieties, Kodaira dimensions, and Lang's conjecture
    Abramovich, Ban
    Varilly-Alvarado, Anthony
    ADVANCES IN MATHEMATICS, 2018, 329 : 523 - 540
  • [30] A STATISTICAL VIEW ON THE CONJECTURE OF LANG ABOUT THE CANONICAL HEIGHT ON ELLIPTIC CURVES
    Le Boudec, Pierre
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (12) : 8347 - 8361