On Sendov's Conjecture

被引:1
|
作者
Sofi, G. M. [1 ]
Shah, W. M. [1 ]
机构
[1] Cent Univ Kashmir, Dept Math, Ganderbal 191201, India
关键词
Polynomials; Zeros; Critical points; POLYNOMIALS;
D O I
10.1007/s12215-021-00690-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sendov's Conjecture asserts that if all the zeros of a polynomial p lie inside the closed unit disk then a closed unit disk centered at each of its zeros contains a critical point of p . In this paper, we show that the Sendov's Conjecture holds for a polynomial if all its zeros lie on a line or a circle inside the unit disk.
引用
收藏
页码:493 / 497
页数:5
相关论文
共 50 条
  • [1] On Sendov?s conjecture
    Cotirla, Luminita-Ioana
    Szasz, Robert
    FILOMAT, 2023, 37 (16) : 5283 - 5286
  • [2] On Sendov’s Conjecture
    G. M. Sofi
    W. M. Shah
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 493 - 497
  • [3] Two approaches to Sendov's conjecture
    Borcea, J
    ARCHIV DER MATHEMATIK, 1998, 71 (01) : 46 - 54
  • [4] A Private Case of Sendov's Conjecture
    Stoyanov, Todor Stoyanov
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, 13 (04): : 807 - 813
  • [5] ON A CONJECTURE OF SENDOV
    DIMITROV, DG
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1983, 36 (05): : 561 - 563
  • [6] Two approaches to Sendov's conjecture
    Julius Borcea
    Archiv der Mathematik, 1998, 71 : 46 - 54
  • [7] Non-Archimedean Sendov’s Conjecture
    Daebeom Choi
    Seewoo Lee
    p-Adic Numbers, Ultrametric Analysis and Applications, 2022, 14 : 77 - 80
  • [8] Sendov's Conjecture: A Note on a Paper of Degot
    Chalebgwa, T. P.
    ANALYSIS MATHEMATICA, 2020, 46 (03) : 447 - 463
  • [9] Non-Archimedean Sendov's Conjecture
    Choi, Daebeom
    Lee, Seewoo
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2022, 14 (01) : 77 - 80
  • [10] A REMARK ON SENDOV CONJECTURE
    Kumar, Prasanna
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2018, 71 (06): : 731 - 734