Sendov's Conjecture: A Note on a Paper of Degot

被引:4
|
作者
Chalebgwa, T. P. [1 ,2 ]
机构
[1] Stellenbosch Univ, Dept Math Sci, Div Math, Private Bag X1, ZA-7602 Matieland, South Africa
[2] Fields Inst Res Math Sci, 222 Coll St, Toronto, ON M5T 3J1, Canada
基金
新加坡国家研究基金会;
关键词
Sendov's conjecture; geometry of complex polynomials; critical point;
D O I
10.1007/s10476-020-0050-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sendov's conjecture states that if all the zeroes of a complex polynomialP(z) of degree at least two lie in the unit disk, then within a unit distance of each zero lies a critical point ofP(z). In a paper that appeared in 2014, Degot proved that, for eacha is an element of (0, 1), there exists an integerNsuch that for any polynomialP(z) with degree greater thanN, ifP(a) = 0 and all zeroes lie inside the unit disk, the disk |z-a| <= 1 contains a critical point ofP(z). Based on this result, we derive an explicit formulaN(a) for eacha is an element of (0, 1) and, consequently obtain a uniform boundNfor alla is an element of [alpha, beta] where 0 < alpha < beta < 1. This (partially) addresses the questions posed in Degot's paper.
引用
收藏
页码:447 / 463
页数:17
相关论文
共 50 条
  • [1] Sendov’s Conjecture: A Note on a Paper of Dégot
    T. P. Chalebgwa
    [J]. Analysis Mathematica, 2020, 46 : 447 - 463
  • [2] A note on the structure of the zeros of a polynomial and Sendov's conjecture
    Sofi, G. M.
    Shah, W. M.
    [J]. CUBO-A MATHEMATICAL JOURNAL, 2023, 25 (03): : 515 - 521
  • [3] On Sendov?s conjecture
    Cotirla, Luminita-Ioana
    Szasz, Robert
    [J]. FILOMAT, 2023, 37 (16) : 5283 - 5286
  • [4] On Sendov's Conjecture
    Sofi, G. M.
    Shah, W. M.
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (01) : 493 - 497
  • [5] A NOTE ON THE ILYEFF-SENDOV CONJECTURE
    KUMAR, S
    SHENOY, BG
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1990, 21 (11): : 981 - 983
  • [6] On Sendov’s Conjecture
    G. M. Sofi
    W. M. Shah
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 493 - 497
  • [7] Two approaches to Sendov's conjecture
    Borcea, J
    [J]. ARCHIV DER MATHEMATIK, 1998, 71 (01) : 46 - 54
  • [8] A Private Case of Sendov's Conjecture
    Stoyanov, Todor Stoyanov
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, 13 (04): : 807 - 813
  • [9] ON A CONJECTURE OF SENDOV
    DIMITROV, DG
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1983, 36 (05): : 561 - 563
  • [10] Two approaches to Sendov's conjecture
    Julius Borcea
    [J]. Archiv der Mathematik, 1998, 71 : 46 - 54