Body-of-revolution finite-difference time-domain modeling of hybrid-plasmonic ring resonators

被引:3
|
作者
Mirzaei-Ghormish, S. [1 ]
Shahabadi, M. S. [1 ,2 ]
Smalley, D. E. [1 ]
机构
[1] Brigham Young Univ, Dept Elect & Comp Engn, Electroholog Lab, Provo, UT 84602 USA
[2] Univ Tehran, Coll Engn, Ctr Excellence Electromagnet Syst, Sch Elect & Comp Engn,Photon Res Lab, Tehran, Iran
基金
美国国家科学基金会;
关键词
MODES;
D O I
10.1364/OE.468596
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Development of a computational technique for the analysis of quasi-normal modes in hybrid-plasmonic resonators is the main goal of this research. Because of the significant computational costs of this analysis, one has to take various symmetries of these resonators into account. In this research, we consider cylindrical symmetry of hybrid-plasmonic ring resonators and implement a body-of-revolution finite-difference time-domain (BOR-FDTD) technique to analyze these resonators. We extend the BOR-FDTD method by proposing two different sets of auxiliary fields to implement multi-term Drude-Lorentz and multi-term Lorentz models in BOR-FDTD. Moreover, we utilize the filter-diagonalization method to accurately compute the complex resonant frequencies of the resonators. This approach improves numerical accuracy and computational time compared to the Fourier transform method used in previous BOR-FDTD methods. Our numerical analysis is verified by a 2D axisymmetric solver in COMSOL Multiphysics.(c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:36332 / 36342
页数:11
相关论文
共 50 条
  • [41] Consistent modeling of boundaries in acoustic finite-difference time-domain simulations
    Haggblad, Jon
    Engquist, Bjoern
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2012, 132 (03): : 1303 - 1310
  • [42] MODELING GOOD CONDUCTORS USING THE FINITE-DIFFERENCE, TIME-DOMAIN TECHNIQUE
    CHAMBERLIN, K
    GORDON, L
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 1995, 37 (02) : 210 - 216
  • [43] Modeling sea surface scattering by the time-domain finite-difference method
    Stephen, Ralph A.
    Journal of the Acoustical Society of America, 1996, 100 (4 pt 1):
  • [44] A SEMIVECTORIAL FINITE-DIFFERENCE TIME-DOMAIN METHOD
    HUANG, WP
    CHU, ST
    CHAUDHURI, SK
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1991, 3 (09) : 803 - 806
  • [45] Generalized finite-difference time-domain algorithm
    Gao, Benqing
    Gandhi, Om.P.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 1993, 21 (03): : 31 - 36
  • [46] The finite-difference time-domain method for modeling of seismic wave propagation
    Moczo, Peter
    Robertsson, Johan O. A.
    Eisner, Leo
    ADVANCES IN GEOPHYSICS, VOL 48: ADVANCES IN WAVE PROPAGATION IN HETEROGENEOUS EARTH, 2007, 48 : 421 - 516
  • [47] Surface impedance modeling using the finite-difference time-domain method
    Griffith Univ, Queensland
    IEEE Trans Geosci Remote Sens, 5 (1350-1356):
  • [48] Dispersion properties of nonradiating configurations: Finite-difference time-domain modeling
    Boardman, AD
    Marinov, K
    Zheludev, N
    Fedotov, VA
    PHYSICAL REVIEW E, 2005, 72 (03):
  • [49] Effective Modeling of Magnetized Graphene in the Finite-Difference Time-Domain Method
    Feizi, Mina
    Nayyeri, Vahid
    Ramahi, Omar M.
    2017 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON ADVANCED MATERIALS AND PROCESSES FOR RF AND THZ APPLICATIONS (IMWS-AMP), 2017,
  • [50] On the stability of the finite-difference time-domain method
    Remis, RF
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 163 (01) : 249 - 261