Body-of-revolution finite-difference time-domain modeling of hybrid-plasmonic ring resonators

被引:3
|
作者
Mirzaei-Ghormish, S. [1 ]
Shahabadi, M. S. [1 ,2 ]
Smalley, D. E. [1 ]
机构
[1] Brigham Young Univ, Dept Elect & Comp Engn, Electroholog Lab, Provo, UT 84602 USA
[2] Univ Tehran, Coll Engn, Ctr Excellence Electromagnet Syst, Sch Elect & Comp Engn,Photon Res Lab, Tehran, Iran
基金
美国国家科学基金会;
关键词
MODES;
D O I
10.1364/OE.468596
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Development of a computational technique for the analysis of quasi-normal modes in hybrid-plasmonic resonators is the main goal of this research. Because of the significant computational costs of this analysis, one has to take various symmetries of these resonators into account. In this research, we consider cylindrical symmetry of hybrid-plasmonic ring resonators and implement a body-of-revolution finite-difference time-domain (BOR-FDTD) technique to analyze these resonators. We extend the BOR-FDTD method by proposing two different sets of auxiliary fields to implement multi-term Drude-Lorentz and multi-term Lorentz models in BOR-FDTD. Moreover, we utilize the filter-diagonalization method to accurately compute the complex resonant frequencies of the resonators. This approach improves numerical accuracy and computational time compared to the Fourier transform method used in previous BOR-FDTD methods. Our numerical analysis is verified by a 2D axisymmetric solver in COMSOL Multiphysics.(c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:36332 / 36342
页数:11
相关论文
共 50 条
  • [21] FINITE-DIFFERENCE TIME-DOMAIN MODELING OF CURVED SURFACES
    JURGENS, TG
    TAFLOVE, A
    UMASHANKAR, K
    MOORE, TG
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1992, 40 (04) : 357 - 366
  • [22] Finite-difference time-domain methods
    Teixeira, F. L.
    Sarris, C.
    Zhang, Y.
    Na, D. -Y.
    Berenger, J. -P.
    Su, Y.
    Okoniewski, M.
    Chew, W. C.
    Backman, V.
    Simpson, J. J.
    NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01):
  • [23] Finite-difference time-domain methods
    F. L. Teixeira
    C. Sarris
    Y. Zhang
    D.-Y. Na
    J.-P. Berenger
    Y. Su
    M. Okoniewski
    W. C. Chew
    V. Backman
    J. J. Simpson
    Nature Reviews Methods Primers, 3
  • [24] Time-domain finite-difference modeling for attenuative anisotropic media
    Bai, Tong
    Tsvankin, Ilya
    GEOPHYSICS, 2016, 81 (02) : C69 - C77
  • [25] ELECTROMAGNETIC MODELING USING THE FINITE-DIFFERENCE TIME-DOMAIN METHOD
    DUCEAU, E
    RECHERCHE AEROSPATIALE, 1994, (05): : 301 - 317
  • [26] Modeling SPR sensors with the finite-difference time-domain method
    Christensen, D
    Fowers, D
    BIOSENSORS & BIOELECTRONICS, 1996, 11 (6-7): : 677 - 684
  • [27] On the Stability of the Finite-Difference Time-Domain Modeling of Lorentz Media
    Panaretos, Anastasios H.
    Diaz, Rodolfo E.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2011, 21 (06) : 283 - 285
  • [28] Computing the quality factor of resonators using the finite-difference - Time-domain algorithm
    Harms, PH
    Shimony, Y
    Mittra, R
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1996, 11 (02) : 64 - 66
  • [29] Finite-difference time-domain simulation of resonant modes of rectangular dielectric resonators
    Semouchkina, E
    Semouchkin, G
    Mittra, R
    Cao, WW
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2003, 36 (03) : 160 - 164
  • [30] A fast near-to-far-field transformation in body of revolution finite-difference time-domain method
    Farahat, N
    Yu, WH
    Mittra, R
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003, 51 (09) : 2534 - 2540