Body-of-revolution finite-difference time-domain modeling of hybrid-plasmonic ring resonators

被引:3
|
作者
Mirzaei-Ghormish, S. [1 ]
Shahabadi, M. S. [1 ,2 ]
Smalley, D. E. [1 ]
机构
[1] Brigham Young Univ, Dept Elect & Comp Engn, Electroholog Lab, Provo, UT 84602 USA
[2] Univ Tehran, Coll Engn, Ctr Excellence Electromagnet Syst, Sch Elect & Comp Engn,Photon Res Lab, Tehran, Iran
基金
美国国家科学基金会;
关键词
MODES;
D O I
10.1364/OE.468596
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Development of a computational technique for the analysis of quasi-normal modes in hybrid-plasmonic resonators is the main goal of this research. Because of the significant computational costs of this analysis, one has to take various symmetries of these resonators into account. In this research, we consider cylindrical symmetry of hybrid-plasmonic ring resonators and implement a body-of-revolution finite-difference time-domain (BOR-FDTD) technique to analyze these resonators. We extend the BOR-FDTD method by proposing two different sets of auxiliary fields to implement multi-term Drude-Lorentz and multi-term Lorentz models in BOR-FDTD. Moreover, we utilize the filter-diagonalization method to accurately compute the complex resonant frequencies of the resonators. This approach improves numerical accuracy and computational time compared to the Fourier transform method used in previous BOR-FDTD methods. Our numerical analysis is verified by a 2D axisymmetric solver in COMSOL Multiphysics.(c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:36332 / 36342
页数:11
相关论文
共 50 条
  • [31] A hybrid coordinate scheme for enhancing the finite-difference time-domain method
    Zhou, BX
    Wang, SC
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2001, 30 (02) : 114 - 116
  • [32] Hybrid finite-difference time-domain modeling of curved surfaces using tetrahedral edge elements
    Wu, RB
    Itoh, T
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1997, 45 (08) : 1302 - 1309
  • [33] Finite-Difference Time-Domain Modeling of Space-Time-Modulated Metasurfaces
    Stewart, Scott A.
    Smy, Tom J.
    Gupta, Shulabh
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (01) : 281 - 292
  • [34] Least Squares Finite-Difference Time-Domain
    de Oliveira, Rodrigo M. S.
    Paiva, Rodrigo R.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (09) : 6111 - 6115
  • [35] Finite element time-domain body-of-revolution Maxwell solver based on discrete exterior calculus
    Na, Dong-Yeop
    Borges, Ben-Hur, V
    Teixeira, Fernando L.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 376 : 249 - 275
  • [36] Quantum Finite-Difference Time-Domain Scheme
    Na, Dong-Yeop
    Chew, Weng Cho
    PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL ELECTROMAGNETICS (ICCEM 2020), 2020, : 62 - 63
  • [37] Surface impedance modeling using the finite-difference time-domain method
    Thiel, DV
    Mittra, R
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35 (05): : 1350 - 1356
  • [38] On the modeling of periodic structures using the finite-difference time-domain algorithm
    Yu, WH
    Dey, S
    Mittra, R
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2000, 24 (03) : 151 - 155
  • [39] Finite-difference time-domain modeling for field predictions inside rooms
    Holloway, CL
    McKenna, P
    Steffen, DA
    IEEE 1997 INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY - SYMPOSIUM RECORD, 1997, : 60 - 65
  • [40] Efficient Finite-Difference Time-Domain modeling of driven periodic structures
    Li, Dongying
    Sarris, Costas D.
    2007 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-12, 2007, : 4777 - 4780