Body-of-revolution finite-difference time-domain modeling of hybrid-plasmonic ring resonators

被引:3
|
作者
Mirzaei-Ghormish, S. [1 ]
Shahabadi, M. S. [1 ,2 ]
Smalley, D. E. [1 ]
机构
[1] Brigham Young Univ, Dept Elect & Comp Engn, Electroholog Lab, Provo, UT 84602 USA
[2] Univ Tehran, Coll Engn, Ctr Excellence Electromagnet Syst, Sch Elect & Comp Engn,Photon Res Lab, Tehran, Iran
基金
美国国家科学基金会;
关键词
MODES;
D O I
10.1364/OE.468596
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Development of a computational technique for the analysis of quasi-normal modes in hybrid-plasmonic resonators is the main goal of this research. Because of the significant computational costs of this analysis, one has to take various symmetries of these resonators into account. In this research, we consider cylindrical symmetry of hybrid-plasmonic ring resonators and implement a body-of-revolution finite-difference time-domain (BOR-FDTD) technique to analyze these resonators. We extend the BOR-FDTD method by proposing two different sets of auxiliary fields to implement multi-term Drude-Lorentz and multi-term Lorentz models in BOR-FDTD. Moreover, we utilize the filter-diagonalization method to accurately compute the complex resonant frequencies of the resonators. This approach improves numerical accuracy and computational time compared to the Fourier transform method used in previous BOR-FDTD methods. Our numerical analysis is verified by a 2D axisymmetric solver in COMSOL Multiphysics.(c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:36332 / 36342
页数:11
相关论文
共 50 条
  • [1] Body-of-revolution wave equation finite-difference time-domain method
    Wang, Jian-Yong
    Zhao, Chang-Qing
    Li, Qing-Wu
    Xitong Fangzhen Xuebao / Journal of System Simulation, 2007, 19 (04): : 735 - 737
  • [2] Stability condition for body-of-revolution finite-difference time-domain method
    Chen, J.
    Wang, J.
    ELECTRONICS LETTERS, 2007, 43 (21) : 1126 - 1127
  • [3] A novel body-of-revolution finite-difference time-domain method with weakly conditional stability
    Chen, Juan
    Wang, Jianguo
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2008, 18 (06) : 377 - 379
  • [4] BODY-OF-REVOLUTION FINITE-DIFFERENCE TIME-DOMAIN MODELING OF SPACE-TIME FOCUSING BY A 3-DIMENSIONAL LENS
    DAVIDSON, DB
    ZIOLKOWSKI, RW
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (04): : 1471 - 1490
  • [5] The Body-of-Revolution Hybrid Implicit-Explicit Finite-Difference Time-Domain Method With Large Time Step Size
    Chen, Juan
    Wang, Jianguo
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2008, 50 (02) : 369 - 374
  • [6] Modeling of microwave ring resonators using the finite-difference time-domain method (FDTD)
    Semouchkina, E
    Cao, WW
    Mittra, R
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2000, 24 (06) : 392 - 396
  • [7] Efficient body of revolution finite-difference time-domain modeling of integrated lens antennas
    van der Vorst, MJM
    de Maagt, PJI
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2002, 12 (07) : 258 - 260
  • [8] Broadband Finite-Difference Time-Domain Modeling of Plasmonic Organic Photovoltaics
    Jung, Kyung-Young
    Yoon, Woo-Jun
    Park, Yong Bae
    Berger, Paul R.
    Teixeira, Fernando L.
    ETRI JOURNAL, 2014, 36 (04) : 653 - 660
  • [9] Far-field pattern calculation in body-of-revolution finite-difference time-domain (BOR-FDTD) method
    Yu, WH
    Farahat, N
    Mittra, R
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2001, 31 (01) : 47 - 50
  • [10] Body-of-revolution finite-difference time-domain for rigorous analysis of three-dimensional axisymmetric transformation optics lenses
    Wang, Xiande
    Wu, Qi
    Turpin, Jeremiah P.
    Werner, Douglas H.
    OPTICS LETTERS, 2013, 38 (01) : 67 - 69