Environmental controls on the light use efficiency of terrestrial gross primary production

被引:6
|
作者
Bloomfield, Keith J. [1 ,10 ]
Stocker, Benjamin D. [2 ,3 ,4 ,5 ]
Keenan, Trevor F. [6 ,7 ]
Prentice, I. Colin [1 ,8 ,9 ]
机构
[1] Imperial Coll London, Georgina Mace Ctr Living Planet, Dept Life Sci, Ascot, England
[2] ETH, Dept Environm Syst Sci, Zurich, Switzerland
[3] Swiss Fed Inst Forest Snow & Landscape Res WSL, Birmensdorf, Switzerland
[4] Univ Bern, Inst Geog, Bern, Switzerland
[5] Univ Bern, Oeschger Ctr Climate Change Res, Bern, Switzerland
[6] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA USA
[7] Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA USA
[8] Macquarie Univ, Dept Biol Sci, N Ryde, NSW, Australia
[9] Tsinghua Univ, Dept Earth Syst Sci, Key Lab Earth Syst Modelling, Minist Educ, Beijing, Peoples R China
[10] Imperial Coll London, Georgina Mace Ctr Living Planet, Dept Life Sci, Silwood Pk Campus,Buckhurst Rd, Ascot SL5 7PY, England
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
diffuse radiation; eddy covariance; FLUXNET; light use efficiency; soil moisture; temperature; terrestrial biosphere model; vapor pressure deficit; TEMPERATURE RESPONSE FUNCTIONS; CARBON-DIOXIDE EXCHANGE; NET ECOSYSTEM EXCHANGE; THERMAL-ACCLIMATION; NITROGEN RELATIONSHIPS; CO2; ASSIMILATION; PHOTOSYNTHESIS; MODEL; CLIMATE; FOREST;
D O I
10.1111/gcb.16511
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Gross primary production (GPP) by terrestrial ecosystems is a key quantity in the global carbon cycle. The instantaneous controls of leaf-level photosynthesis are well established, but there is still no consensus on the mechanisms by which canopy-level GPP depends on spatial and temporal variation in the environment. The standard model of photosynthesis provides a robust mechanistic representation for C-3 species; however, additional assumptions are required to "scale up " from leaf to canopy. As a consequence, competing models make inconsistent predictions about how GPP will respond to continuing environmental change. This problem is addressed here by means of an empirical analysis of the light use efficiency (LUE) of GPP inferred from eddy covariance carbon dioxide flux measurements, in situ measurements of photosynthetically active radiation (PAR), and remotely sensed estimates of the fraction of PAR (fAPAR) absorbed by the vegetation canopy. Focusing on LUE allows potential drivers of GPP to be separated from its overriding dependence on light. GPP data from over 100 sites, collated over 20 years and located in a range of biomes and climate zones, were extracted from the FLUXNET2015 database and combined with remotely sensed fAPAR data to estimate daily LUE. Daytime air temperature, vapor pressure deficit, diffuse fraction of solar radiation, and soil moisture were shown to be salient predictors of LUE in a generalized linear mixed-effects model. The same model design was fitted to site-based LUE estimates generated by 16 terrestrial ecosystem models. The published models showed wide variation in the shape, the strength, and even the sign of the environmental effects on modeled LUE. These findings highlight important model deficiencies and suggest a need to progress beyond simple "goodness of fit " comparisons of inferred and predicted carbon fluxes toward an approach focused on the functional responses of the underlying dependencies.
引用
收藏
页码:1037 / 1053
页数:17
相关论文
共 50 条
  • [1] Comparison of four light use efficiency models for estimating terrestrial gross primary production
    Zhang, Liang-Xia
    Zhou, De-Cheng
    Fan, Jiang-Wen
    Hu, Zhong-Min
    [J]. ECOLOGICAL MODELLING, 2015, 300 : 30 - 39
  • [2] Identification of a general light use efficiency model for gross primary production
    Horn, J. E.
    Schulz, K.
    [J]. BIOGEOSCIENCES, 2011, 8 (04) : 999 - 1021
  • [3] Phenology-Based Maximum Light Use Efficiency for Modeling Gross Primary Production across Typical Terrestrial Ecosystems
    Lv, Yulong
    Chi, Hong
    Shi, Peichen
    Huang, Duan
    Gan, Jialiang
    Li, Yifan
    Gao, Xinyi
    Han, Yifei
    Chang, Cun
    Wan, Jun
    Ling, Feng
    [J]. REMOTE SENSING, 2023, 15 (16)
  • [4] Impacts of light use efficiency and fPAR parameterization on gross primary production modeling
    Cheng, Yen-Ben
    Zhang, Qingyuan
    Lyapustin, Alexei I.
    Wang, Yujie
    Middleton, Elizabeth M.
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2014, 189 : 187 - 197
  • [5] Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the La Thuile database
    Yuan, Wenping
    Cai, Wenwen
    Xia, Jiangzhou
    Chen, Jiquan
    Liu, Shuguang
    Dong, Wenjie
    Merbold, Lutz
    Law, Beverly
    Arain, Altaf
    Beringer, Jason
    Bernhofer, Christian
    Black, Andy
    Blanken, Peter D.
    Cescatti, Alessandro
    Chen, Yang
    Francois, Louis
    Gianelle, Damiano
    Janssens, Ivan A.
    Jung, Martin
    Kato, Tomomichi
    Kiely, Gerard
    Liu, Dan
    Marcolla, Barbara
    Montagnani, Leonardo
    Raschi, Antonio
    Roupsard, Olivier
    Varlagin, Andrej
    Wohlfahrt, Georg
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2014, 192 : 108 - 120
  • [6] Environmental Drivers of Gross Primary Productivity and Light Use Efficiency of a Temperate Spruce Forest
    Reitz, O.
    Bogena, H.
    Neuwirth, B.
    Sanchez-Azofeifa, A.
    Graf, A.
    Bates, J.
    Leuchner, M.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2023, 128 (02)
  • [7] Improving the light use efficiency model for simulating terrestrial vegetation gross primary production by the inclusion of diffuse radiation across ecosystems in China
    Wang, Shaoqiang
    Huang, Kun
    Yan, Hao
    Yan, Huimin
    Zhou, Lei
    Wang, Huimin
    Zhang, Junhui
    Yan, Junhua
    Zhao, Liang
    Wang, Yanfen
    Shi, Peili
    Zhao, Fenghua
    Sun, Leigang
    [J]. ECOLOGICAL COMPLEXITY, 2015, 23 : 1 - 13
  • [8] Spatial extrapolation of light use efficiency model parameters to predict gross primary production
    Horn, J. E.
    Schulz, K.
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2011, 3
  • [9] A cross-biome comparison of daily light use efficiency for gross primary production
    Turner, DP
    Urbanski, S
    Bremer, D
    Wofsy, SC
    Meyers, T
    Gower, ST
    Gregory, M
    [J]. GLOBAL CHANGE BIOLOGY, 2003, 9 (03) : 383 - 395
  • [10] Development of a two-leaf light use efficiency model for improving the calculation of terrestrial gross primary productivity
    He, Mingzhu
    Ju, Weimin
    Zhou, Yanlian
    Chen, Jingming
    He, Honglin
    Wang, Shaoqiang
    Wang, Huimin
    Guan, Dexin
    Yan, Junhua
    Li, Yingnian
    Hao, Yanbin
    Zhao, Fenghua
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2013, 173 : 28 - 39