Spatial extrapolation of light use efficiency model parameters to predict gross primary production

被引:11
|
作者
Horn, J. E. [1 ]
Schulz, K. [2 ]
机构
[1] Karlsruhe Inst Technol, Inst Photogrammetry & Remote Sensing, D-76128 Karlsruhe, Germany
[2] Univ Munich, Dept Geog, D-80333 Munich, Germany
关键词
LEAF-AREA INDEX; CARBON-DIOXIDE EXCHANGE; SUPPORT VECTOR MACHINES; NET PRIMARY PRODUCTION; OLD-GROWTH; COMBINING MODIS; INTERANNUAL VARIABILITY; ECOSYSTEM RESPIRATION; TERRESTRIAL GROSS; CONIFEROUS FOREST;
D O I
10.1029/2011MS000070
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
To capture the spatial and temporal variability of the gross primary production as a key component of the global carbon cycle, the light use efficiency modeling approach in combination with remote sensing data has shown to be well suited. Typically, the model parameters, such as the maximum light use efficiency, are either set to a universal constant or to land class dependent values stored in look-up tables. In this study, we employ the machine learning technique support vector regression to explicitly relate the model parameters of a light use efficiency model calibrated at several FLUXNET sites to site-specific characteristics obtained by meteorological measurements, ecological estimations and remote sensing data. A feature selection algorithm extracts the relevant site characteristics in a cross-validation, and leads to an individual set of characteristic attributes for each parameter. With this set of attributes, the model parameters can be estimated at sites where a parameter calibration is not possible due to the absence of eddy covariance flux measurement data. This will finally allow a spatially continuous model application. The performance of the spatial extrapolation scheme is evaluated with a cross-validation approach, which shows the methodology to be well suited to recapture the variability of gross primary production across the study sites.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Identification of a general light use efficiency model for gross primary production
    Horn, J. E.
    Schulz, K.
    [J]. BIOGEOSCIENCES, 2011, 8 (04) : 999 - 1021
  • [2] Environmental controls on the light use efficiency of terrestrial gross primary production
    Bloomfield, Keith J.
    Stocker, Benjamin D.
    Keenan, Trevor F.
    Prentice, I. Colin
    [J]. GLOBAL CHANGE BIOLOGY, 2022, : 1037 - 1053
  • [3] Seasonal fluctuations of photosynthetic parameters for light use efficiency models and the impacts on gross primary production estimation
    Lin, Xiaofeng
    Chen, Baozhang
    Chen, Jing
    Zhang, Huifang
    Sun, Shaobo
    Xu, Guang
    Guo, Lifeng
    Ge, Mengyu
    Qu, Junfeng
    Li, Lijuan
    Kong, Yawen
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2017, 236 : 22 - 35
  • [4] A dynamic-leaf light use efficiency model for improving gross primary production estimation
    Huang, Lingxiao
    Yuan, Wenping
    Zheng, Yi
    Zhou, Yanlian
    He, Mingzhu
    Jin, Jiaxin
    Huang, Xiaojuan
    Chen, Siyuan
    Liu, Meng
    Guan, Xiaobin
    Jiang, Shouzheng
    Lin, Xiaofeng
    Li, Zhao-Liang
    Tang, Ronglin
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2024, 19 (01)
  • [5] Sources of uncertainty in gross primary productivity simulated by light use efficiency models: Model structure, parameters, input data, and spatial resolution
    Zheng, Yi
    Zhang, Li
    Xiao, Jingfeng
    Yuan, Wenping
    Yan, Min
    Li, Tong
    Zhang, Zhiqiang
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2018, 263 : 242 - 257
  • [6] Impacts of light use efficiency and fPAR parameterization on gross primary production modeling
    Cheng, Yen-Ben
    Zhang, Qingyuan
    Lyapustin, Alexei I.
    Wang, Yujie
    Middleton, Elizabeth M.
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2014, 189 : 187 - 197
  • [7] A two-stage light-use efficiency model for improving gross primary production estimation in agroecosystems
    Huang, Lingxiao
    Lin, Xiaofeng
    Jiang, Shouzheng
    Liu, Meng
    Jiang, Yazhen
    Li, Zhao-Liang
    Tang, Ronglin
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2022, 17 (10)
  • [8] Comparison of four light use efficiency models for estimating terrestrial gross primary production
    Zhang, Liang-Xia
    Zhou, De-Cheng
    Fan, Jiang-Wen
    Hu, Zhong-Min
    [J]. ECOLOGICAL MODELLING, 2015, 300 : 30 - 39
  • [9] A cross-biome comparison of daily light use efficiency for gross primary production
    Turner, DP
    Urbanski, S
    Bremer, D
    Wofsy, SC
    Meyers, T
    Gower, ST
    Gregory, M
    [J]. GLOBAL CHANGE BIOLOGY, 2003, 9 (03) : 383 - 395
  • [10] A general model for the light-use efficiency of primary production
    Haxeltine, A
    Prentice, IC
    [J]. FUNCTIONAL ECOLOGY, 1996, 10 (05) : 551 - 561