ORIENTED TRIPLET MARKOV FIELDS FOR HYPERSPECTRAL IMAGE SEGMENTATION

被引:0
|
作者
Courbot, Jean-Baptiste [1 ,3 ]
Monfrini, Emmanuel [2 ]
Mazet, Vincent [1 ]
Collet, Christophe [1 ]
机构
[1] Univ Strasbourg, CNRS, ICube, F-67412 Illkirch Graffenstaden, France
[2] CNRS, Dept CITI, SAMOVAR, F-91011 Evry, France
[3] Univ Lyon 1, Univ Lyon, Ens Lyon, CNRS,CRAL UMR5574, F-69230 St Genis Laval, France
关键词
Triplet Markov Field; Bayesian Segmentation; Orientation Retrieving;
D O I
暂无
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Hyperspectral image processing benefits greatly from using spatial information. Markov field modeling is a well-known statistical model class for considering spatial relationships between sites of an image. Often, the model restricts to Hidden Markov Field, therefore cannot handle non-stationarities in the images. This paper presents a Triplet Markov Field model for hyperspectral image segmentation, allowing the joint retrieving of image classes and local orientations. Segmentation results on synthetic data validate the methods, and results on real astronomical data are presented.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] SUPERVISED HYPERSPECTRAL IMAGE SEGMENTATION: A CONVEX FORMULATION USING HIDDEN FIELDS
    Condessa, Filipe
    Bioucas-Dias, Jose
    Kovacevic, Jelena
    2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,
  • [42] Hyperspectral Image Classification Using Gaussian Mixture Models and Markov Random Fields
    Li, Wei
    Prasad, Saurabh
    Fowler, James E.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (01) : 153 - 157
  • [43] GPU IMPLEMENTATION OF HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON WEIGHTED MARKOV RANDOM FIELDS
    Wu, Zebin
    Wang, Qicong
    Plaza, Antonio
    Li, Jun
    Wei, Jie
    Wei, Zhihui
    2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [44] Adaptive Edge Preserving Maps in Markov Random Fields for Hyperspectral Image Classification
    Pan, Chao
    Jia, Xiuping
    Li, Jie
    Gao, Xinbo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (10): : 8568 - 8583
  • [45] Preserving objects in Markov Random Fields region growing image segmentation
    Dawoud, Amer
    Netchaev, Anton
    PATTERN ANALYSIS AND APPLICATIONS, 2012, 15 (02) : 155 - 161
  • [46] Preserving objects in Markov Random Fields region growing image segmentation
    Amer Dawoud
    Anton Netchaev
    Pattern Analysis and Applications, 2012, 15 : 155 - 161
  • [47] Image segmentation based on the integration of Markov Random Fields and deformable models
    Chen, T
    Metaxas, D
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2000, 2000, 1935 : 256 - 265
  • [48] Parameter estimation in hidden fuzzy Markov random fields and image segmentation
    Salzenstein, F
    Pieczynski, W
    GRAPHICAL MODELS AND IMAGE PROCESSING, 1997, 59 (04): : 205 - 220
  • [49] RANGE IMAGE SEGMENTATION USING MULTIPLE MARKOV RANDOM-FIELDS
    CHUN, IG
    PARK, KH
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1994, E77D (03) : 306 - 316
  • [50] Fuzzy Markov random fields versus chains for multispectral image segmentation
    Salzenstein, Fabien
    Collet, Christophe
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (11) : 1753 - 1767