SUPERVISED HYPERSPECTRAL IMAGE SEGMENTATION: A CONVEX FORMULATION USING HIDDEN FIELDS

被引:0
|
作者
Condessa, Filipe [1 ,2 ,3 ,5 ]
Bioucas-Dias, Jose [1 ,2 ]
Kovacevic, Jelena [3 ,4 ,5 ]
机构
[1] Inst Telecomunicacoes, Lisbon, Portugal
[2] Univ Lisbon, Inst Super Tecn, Lisbon, Portugal
[3] Carnegie Mellon Univ, Dept ECE, Pittsburgh, PA 15213 USA
[4] Carnegie Mellon Univ, Dept BME, Pittsburgh, PA 15213 USA
[5] Carnegie Mellon Univ, Ctr Bioimage Informat, Pittsburgh, PA 15213 USA
关键词
Image segmentation; hidden Markov measure fields; hidden fields; alternating optimization; Constrained Split Augmented Lagrangian Shrinkage Algorithm (SALSA); VECTORIAL TOTAL VARIATION; MINIMIZATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Image segmentation is fundamentally a discrete problem. It consists of finding a partition of the image domain such that the pixels in each element of the partition exhibit some kind of similarity. The optimization is obtained via integer optimization which is NP-hard, apart from few exceptions. We sidestep from the discrete nature of image segmentation by formulating the problem in the Bayesian framework and introducing a hidden set of real-valued random fields determining the probability of a given partition. Armed with this model, the original discrete optimization is converted into a convex program. To infer the hidden fields, we introduce the Segmentation via the Constrained Split Augmented Lagrangian Shrinkage Algorithm (SegSALSA). The effectiveness of the proposed methodology is illustrated with hyperspectral image segmentation.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] SEGSALSA-STR: A CONVEX FORMULATION TO SUPERVISED HYPERSPECTRAL IMAGE SEGMENTATION USING HIDDEN FIELDS AND STRUCTURE TENSOR REGULARIZATION
    Condessa, Filipe
    Bioucas-Dias, Jose
    Kovacevic, Jelena
    2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
  • [2] BAYESIAN IMAGE SEGMENTATION USING HIDDEN FIELDS: SUPERVISED, UNSUPERVISED, AND SEMI-SUPERVISED FORMULATIONS
    Bioucas-Dias, Jose M.
    Figueiredo, Mario A. T.
    2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 523 - 527
  • [3] HYPERSPECTRAL IMAGE SEGMENTATION AND UNMIXING USING HIDDEN MARKOV TREES
    Mittelman, Roni
    Hero, Alfred O.
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 1373 - 1376
  • [4] CONVEX FORMULATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION WITH SUPERPIXELS
    Liu, Yi
    Condessa, Filipe
    Bioucas-Dias, Jose
    Li, Jun
    Plaza, Antonio
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3294 - 3297
  • [5] SEMI-SUPERVISED HYPERSPECTRAL IMAGE SEGMENTATION
    Li, Jun
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 215 - +
  • [6] A Supervised Segmentation Network for Hyperspectral Image Classification
    Sun, Hao
    Zheng, Xiangtao
    Lu, Xiaoqiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 2810 - 2825
  • [7] Efficient hyperspectral image segmentation using geometric active contour formulation
    Albalooshi, Fatema A.
    Sidike, Paheding
    Asari, Vijayan K.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XX, 2014, 9244
  • [8] Semi-supervised hyperspectral image segmentation using regionalized stochastic watershed
    Angulo, Jesus
    Velasco-Forero, Santiago
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVI, 2010, 7695
  • [9] HYPERSPECTRAL IMAGE SUPERRESOLUTION: AN EDGE-PRESERVING CONVEX FORMULATION
    Simoes, Miguel
    Bioucas-Dias, Jose
    Almeida, Luis B.
    Chanussot, Jocelyn
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 4166 - 4170
  • [10] Hyperspectral Tissue Image Segmentation Using Semi-Supervised NMF and Hierarchical Clustering
    Kumar, Neeraj
    Uppala, Phanikrishna
    Duddu, Karthik
    Sreedhar, Had
    Varma, Vishal
    Guzman, Grace
    Walsh, Michael
    Sethi, Amit
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (05) : 1304 - 1313