SUPERVISED HYPERSPECTRAL IMAGE SEGMENTATION: A CONVEX FORMULATION USING HIDDEN FIELDS

被引:0
|
作者
Condessa, Filipe [1 ,2 ,3 ,5 ]
Bioucas-Dias, Jose [1 ,2 ]
Kovacevic, Jelena [3 ,4 ,5 ]
机构
[1] Inst Telecomunicacoes, Lisbon, Portugal
[2] Univ Lisbon, Inst Super Tecn, Lisbon, Portugal
[3] Carnegie Mellon Univ, Dept ECE, Pittsburgh, PA 15213 USA
[4] Carnegie Mellon Univ, Dept BME, Pittsburgh, PA 15213 USA
[5] Carnegie Mellon Univ, Ctr Bioimage Informat, Pittsburgh, PA 15213 USA
关键词
Image segmentation; hidden Markov measure fields; hidden fields; alternating optimization; Constrained Split Augmented Lagrangian Shrinkage Algorithm (SALSA); VECTORIAL TOTAL VARIATION; MINIMIZATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Image segmentation is fundamentally a discrete problem. It consists of finding a partition of the image domain such that the pixels in each element of the partition exhibit some kind of similarity. The optimization is obtained via integer optimization which is NP-hard, apart from few exceptions. We sidestep from the discrete nature of image segmentation by formulating the problem in the Bayesian framework and introducing a hidden set of real-valued random fields determining the probability of a given partition. Armed with this model, the original discrete optimization is converted into a convex program. To infer the hidden fields, we introduce the Segmentation via the Constrained Split Augmented Lagrangian Shrinkage Algorithm (SegSALSA). The effectiveness of the proposed methodology is illustrated with hyperspectral image segmentation.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Supervised Hyperspectral Image Classification With Rejection
    Condessa, Filipe
    Bioucas-Dias, Jose
    Kovacevic, Jelena
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (06) : 2321 - 2332
  • [42] Convex non-convex image segmentation
    Chan, Raymond
    Lanza, Alessandro
    Morigi, Serena
    Sgallari, Fiorella
    NUMERISCHE MATHEMATIK, 2018, 138 (03) : 635 - 680
  • [43] Handwritten document segmentation using hidden Markov random fields
    Nicolas, S
    Kessentini, Y
    Paquet, T
    Heutte, L
    EIGHTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 212 - 216
  • [44] Hidden Markov Random Fields and Swarm Particles: a Winning Combination in Image Segmentation
    Guerrout, El-Hachemi
    Mahiou, Ramdane
    Ait-Aoudia, Samy
    INTERNATIONAL CONFERENCE ON FUTURE INFORMATION ENGINEERING (FIE 2014), 2014, 10 : 19 - 24
  • [45] Hidden Markov Random Fields and Particle Swarm Combination for Brain Image Segmentation
    Guerrout, El-Hachemi
    Mahiou, Ramdane
    Ait-Aoudia, Samy
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2018, 15 (03) : 462 - 468
  • [46] Spectral-Spatial Hyperspectral Image Segmentation Using Subspace Multinomial Logistic Regression and Markov Random Fields
    Li, Jun
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (03): : 809 - 823
  • [47] Hyperspectral image segmentation using filter banks for texture augmentation
    Hong, PS
    Kaplan, LM
    Smith, MJT
    2003 IEEE WORKSHOP ON ADVANCES IN TECHNIQUES FOR ANALYSIS OF REMOTELY SENSED DATA, 2004, : 254 - 258
  • [48] Hyperspectral Image Classification Based on Image Segmentation
    Cui Binge
    Zhao Faxi
    Ma Xiudan
    Wu Yanan
    2016 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA & SMART CITY (ICITBS), 2017, : 101 - 104
  • [49] Unsupervised Hyperspectral Image Segmentation Using Adaptive Bilateral Filtering
    Ozdil, O.
    Gunes, A.
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 1010 - 1013
  • [50] Hyperspectral image segmentation using spatial-spectral graphs
    Gillis, David B.
    Bowles, Jeffrey H.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVIII, 2012, 8390