SUPERVISED HYPERSPECTRAL IMAGE SEGMENTATION: A CONVEX FORMULATION USING HIDDEN FIELDS

被引:0
|
作者
Condessa, Filipe [1 ,2 ,3 ,5 ]
Bioucas-Dias, Jose [1 ,2 ]
Kovacevic, Jelena [3 ,4 ,5 ]
机构
[1] Inst Telecomunicacoes, Lisbon, Portugal
[2] Univ Lisbon, Inst Super Tecn, Lisbon, Portugal
[3] Carnegie Mellon Univ, Dept ECE, Pittsburgh, PA 15213 USA
[4] Carnegie Mellon Univ, Dept BME, Pittsburgh, PA 15213 USA
[5] Carnegie Mellon Univ, Ctr Bioimage Informat, Pittsburgh, PA 15213 USA
关键词
Image segmentation; hidden Markov measure fields; hidden fields; alternating optimization; Constrained Split Augmented Lagrangian Shrinkage Algorithm (SALSA); VECTORIAL TOTAL VARIATION; MINIMIZATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Image segmentation is fundamentally a discrete problem. It consists of finding a partition of the image domain such that the pixels in each element of the partition exhibit some kind of similarity. The optimization is obtained via integer optimization which is NP-hard, apart from few exceptions. We sidestep from the discrete nature of image segmentation by formulating the problem in the Bayesian framework and introducing a hidden set of real-valued random fields determining the probability of a given partition. Armed with this model, the original discrete optimization is converted into a convex program. To infer the hidden fields, we introduce the Segmentation via the Constrained Split Augmented Lagrangian Shrinkage Algorithm (SegSALSA). The effectiveness of the proposed methodology is illustrated with hyperspectral image segmentation.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Hyperspectral Image Segmentation Using The Dirichlet Mixture Models
    Sigirci, Ibrahim Onur
    Bilgin, Gokhan
    2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, : 983 - 986
  • [32] HYPERSPECTRAL IMAGE SEGMENTATION USING BINARY PARTITION TREES
    Valero, Silvia
    Salembier, Philippe
    Chanussot, Jocelyn
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 1273 - 1276
  • [33] Enhanced Hyperspectral Image Segmentation Using Wavelets Transform
    Hemayed, Elsayed E.
    Megahed, Reem Adel A.
    2013 9TH INTERNATIONAL COMPUTER ENGINEERING CONFERENCE (ICENCO 2013): TODAY INFORMATION SOCIETY WHAT'S NEXT?, 2014, : 61 - 66
  • [34] INTEGRATING IMAGE SEGMENTATION AND ANNOTATION USING SUPERVISED PLSA
    Guo, Qiao-Jin
    Li, Ning
    Yang, Yu-Bin
    Wu, Gang-Shan
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3800 - 3804
  • [35] Supervised multispectral image segmentation using active contours
    Lee, CP
    Snyder, W
    Wang, C
    2005 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-4, 2005, : 4242 - 4247
  • [36] Validating Hyperspectral Image Segmentation
    Nalepa, Jakub
    Myller, Michal
    Kawulok, Michal
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (08) : 1264 - 1268
  • [37] Supervised Spectral-Spatial Hyperspectral Image Classification With Weighted Markov Random Fields
    Sun, Le
    Wu, Zebin
    Liu, Jianjun
    Xiao, Liang
    Wei, Zhihui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (03): : 1490 - 1503
  • [38] Weakly Supervised Conditional Random Fields Model for Semantic Segmentation with Image Patches
    Xu, Xinying
    Xue, Yujing
    Han, Xiaoxia
    Zhang, Zhe
    Xie, Jun
    Ren, Jinchang
    APPLIED SCIENCES-BASEL, 2020, 10 (05):
  • [39] Convex non-convex image segmentation
    Raymond Chan
    Alessandro Lanza
    Serena Morigi
    Fiorella Sgallari
    Numerische Mathematik, 2018, 138 : 635 - 680
  • [40] SUPERVISED HYPERSPECTRAL IMAGE CLASSIFICATION WITH REJECTION
    Condessa, Filipe
    Bioucas-Dias, Jose
    Kovacevic, Jelena
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 2600 - 2603