ORIENTED TRIPLET MARKOV FIELDS FOR HYPERSPECTRAL IMAGE SEGMENTATION

被引:0
|
作者
Courbot, Jean-Baptiste [1 ,3 ]
Monfrini, Emmanuel [2 ]
Mazet, Vincent [1 ]
Collet, Christophe [1 ]
机构
[1] Univ Strasbourg, CNRS, ICube, F-67412 Illkirch Graffenstaden, France
[2] CNRS, Dept CITI, SAMOVAR, F-91011 Evry, France
[3] Univ Lyon 1, Univ Lyon, Ens Lyon, CNRS,CRAL UMR5574, F-69230 St Genis Laval, France
关键词
Triplet Markov Field; Bayesian Segmentation; Orientation Retrieving;
D O I
暂无
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Hyperspectral image processing benefits greatly from using spatial information. Markov field modeling is a well-known statistical model class for considering spatial relationships between sites of an image. Often, the model restricts to Hidden Markov Field, therefore cannot handle non-stationarities in the images. This paper presents a Triplet Markov Field model for hyperspectral image segmentation, allowing the joint retrieving of image classes and local orientations. Segmentation results on synthetic data validate the methods, and results on real astronomical data are presented.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Contextual image segmentation based on AdaBoost and Markov random fields
    Nishii, R
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 3507 - 3509
  • [32] An algorithm for binary image segmentation using polygonal Markov fields
    Kluszczynski, R
    van Lieshout, MC
    Schreiber, T
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2005, PROCEEDINGS, 2005, 3617 : 383 - 390
  • [33] COLOR IMAGE SEGMENTATION USING MARKOV RANDOM-FIELDS
    DAILY, MJ
    IMAGE UNDERSTANDING WORKSHOP /, 1989, : 552 - +
  • [34] Image segmentation by tree-structured Markov random fields
    Poggi, G
    Ragozini, ARP
    IEEE SIGNAL PROCESSING LETTERS, 1999, 6 (07) : 155 - 157
  • [35] Hyperspectral Image Classification With Markov Random Fields and a Convolutional Neural Network
    Cao, Xiangyong
    Zhou, Feng
    Xu, Lin
    Meng, Deyu
    Xu, Zongben
    Paisley, John
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (05) : 2354 - 2367
  • [36] Gaussian mixture model and Markov random fields for hyperspectral image classification
    Ghanbari, Hamid
    Homayouni, Saeid
    Safari, Abdolreza
    Ghamisi, Pedram
    EUROPEAN JOURNAL OF REMOTE SENSING, 2018, 51 (01) : 889 - 900
  • [37] Bayesian image segmentation under varying blur with triplet Markov random field
    Ouali, Sonia
    Courbot, Jean-Baptiste
    Pierron, Romain
    Haeberle, Olivier
    INVERSE PROBLEMS, 2024, 40 (09)
  • [38] A Novel SAR Fusion Image Segmentation Method Based on Triplet Markov Field
    Wang, Jiajing
    Jiao, Shuhong
    Sun, Zhenyu
    SIXTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2014), 2015, 9443
  • [39] Triplet Markov Chain in Images Segmentation
    Ameur, Meryem
    Idrissi, Najlae
    Daoui, Cherki
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV2018), 2018,
  • [40] Unsupervised segmentation of SAR images using triplet Markov fields and Fisher noise distributions
    Benboudjema, Dalila
    Tupin, Florence
    Pieczynski, Wojciech
    Sigelle, Marc
    Nicolas, Jean-Marie
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 3891 - +