Hyperspectral Image Classification With Markov Random Fields and a Convolutional Neural Network

被引:245
|
作者
Cao, Xiangyong [1 ]
Zhou, Feng [2 ]
Xu, Lin [3 ]
Meng, Deyu [1 ]
Xu, Zongben [1 ]
Paisley, John [4 ,5 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Xidian Univ, Natl Lab Radar Signal Proc, Xian 710071, Shaanxi, Peoples R China
[3] NYU, Multimedia & Visual Comp Lab, Abu Dhabi 129188, U Arab Emirates
[4] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[5] Columbia Univ, Data Sci Inst, New York, NY 10027 USA
基金
中国国家自然科学基金;
关键词
Hyperspectral image classification; Markov random fields; convolutional neural networks; SPECTRAL-SPATIAL CLASSIFICATION; LOGISTIC-REGRESSION; URBAN AREAS; LAND-USE; REPRESENTATION;
D O I
10.1109/TIP.2018.2799324
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new supervised classification algorithm for remotely sensed hyperspectral image (HSI) which integrates spectral and spatial information in a unified Bayesian framework. First, we formulate the HSI classification problem from a Bayesian perspective. Then, we adopt a convolutional neural network (CNN) to learn the posterior class distributions using a patch-wise training strategy to better use the spatial information. Next, spatial information is further considered by placing a spatial smoothness prior on the labels. Finally, we iteratively update the CNN parameters using stochastic gradient decent and update the class labels of all pixel vectors using alpha-expansion min-cut-based algorithm. Compared with the other state-of-the-art methods, the classification method achieves better performance on one synthetic data set and two benchmark HSI data sets in a number of experimental settings.
引用
收藏
页码:2354 / 2367
页数:14
相关论文
共 50 条
  • [1] Hyperspectral image classification based on convolutional neural network and random forest
    Wang, Aili
    Wang, Ying
    Chen, Yushi
    [J]. REMOTE SENSING LETTERS, 2019, 10 (11) : 1086 - 1094
  • [2] Hyperspectral Image Classification With CapsNet and Markov Random Fields
    Jiang, Xuefeng
    Zhang, Yue
    Liu, Wenbo
    Gao, Junyu
    Liu, Junrui
    Zhang, Yanning
    Lin, Jianzhe
    [J]. IEEE ACCESS, 2020, 8 : 191956 - 191968
  • [3] Iterative Random Training Sampling Convolutional Neural Network for Hyperspectral Image Classification
    Chang, Chein-, I
    Liang, Chia-Chen
    Hu, Peter Fuming
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [4] Hyperspectral Image Classification With Transfer Learning and Markov Random Fields
    Jiang, Xuefeng
    Zhang, Yue
    Li, Yi
    Li, Shuying
    Zhang, Yanning
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (03) : 544 - 548
  • [5] Consolidated Convolutional Neural Network for Hyperspectral Image Classification
    Chang, Yang-Lang
    Tan, Tan-Hsu
    Lee, Wei-Hong
    Chang, Lena
    Chen, Ying-Nong
    Fan, Kuo-Chin
    Alkhaleefah, Mohammad
    [J]. REMOTE SENSING, 2022, 14 (07)
  • [6] A Lightweight Convolutional Neural Network for Hyperspectral Image Classification
    Jia, Sen
    Lin, Zhijie
    Xu, Meng
    Huang, Qiang
    Zhou, Jun
    Jia, Xiuping
    Li, Qingquan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05): : 4150 - 4163
  • [7] A dense convolutional neural network for hyperspectral image classification
    Zhi, Lu
    Yu, Xuchu
    Liu, Bing
    Wei, Xiangpo
    [J]. REMOTE SENSING LETTERS, 2019, 10 (01) : 59 - 66
  • [8] PolSAR Image Classification with Active Complex-Valued Convolutional-Wavelet Neural Network and Markov Random Fields
    Liu, Lu
    Li, Yongxiang
    [J]. REMOTE SENSING, 2024, 16 (06)
  • [9] RMCNet: Random Multiscale Convolutional Network for Hyperspectral Image Classification
    Zhang, Tian
    Wang, Jun
    Zhang, Erlei
    Yu, Kai
    Zhang, Yongqin
    Peng, Jinye
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (10) : 1826 - 1830
  • [10] Gaussian mixture model and Markov random fields for hyperspectral image classification
    Ghanbari, Hamid
    Homayouni, Saeid
    Safari, Abdolreza
    Ghamisi, Pedram
    [J]. EUROPEAN JOURNAL OF REMOTE SENSING, 2018, 51 (01) : 889 - 900