Hyperspectral Image Classification With Markov Random Fields and a Convolutional Neural Network

被引:246
|
作者
Cao, Xiangyong [1 ]
Zhou, Feng [2 ]
Xu, Lin [3 ]
Meng, Deyu [1 ]
Xu, Zongben [1 ]
Paisley, John [4 ,5 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Xidian Univ, Natl Lab Radar Signal Proc, Xian 710071, Shaanxi, Peoples R China
[3] NYU, Multimedia & Visual Comp Lab, Abu Dhabi 129188, U Arab Emirates
[4] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[5] Columbia Univ, Data Sci Inst, New York, NY 10027 USA
基金
中国国家自然科学基金;
关键词
Hyperspectral image classification; Markov random fields; convolutional neural networks; SPECTRAL-SPATIAL CLASSIFICATION; LOGISTIC-REGRESSION; URBAN AREAS; LAND-USE; REPRESENTATION;
D O I
10.1109/TIP.2018.2799324
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new supervised classification algorithm for remotely sensed hyperspectral image (HSI) which integrates spectral and spatial information in a unified Bayesian framework. First, we formulate the HSI classification problem from a Bayesian perspective. Then, we adopt a convolutional neural network (CNN) to learn the posterior class distributions using a patch-wise training strategy to better use the spatial information. Next, spatial information is further considered by placing a spatial smoothness prior on the labels. Finally, we iteratively update the CNN parameters using stochastic gradient decent and update the class labels of all pixel vectors using alpha-expansion min-cut-based algorithm. Compared with the other state-of-the-art methods, the classification method achieves better performance on one synthetic data set and two benchmark HSI data sets in a number of experimental settings.
引用
收藏
页码:2354 / 2367
页数:14
相关论文
共 50 条
  • [21] Recurrent Feedback Convolutional Neural Network for Hyperspectral Image Classification
    Li, Heng-Chao
    Li, Shuang-Shuang
    Hu, Wen-Shuai
    Feng, Jun-Huan
    Sun, Wei-Wei
    Du, Qian
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [22] Morphologically dilated convolutional neural network for hyperspectral image classification
    Kumar, Vinod
    Singh, Ravi Shankar
    Dua, Yaman
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2022, 101
  • [23] A Lightweight Conditional Convolutional Neural Network for Hyperspectral Image Classification
    Wu, Linfeng
    Wang, Huajun
    Wang, Huiqing
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2023, 89 (07): : 413 - 423
  • [24] Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis
    Li, Chuan
    Wand, Michael
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2479 - 2486
  • [25] Markov Random Field Based Convolutional Neural Networks for Image Classification
    Peng, Yao
    Yin, Hujun
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2017, 2017, 10585 : 387 - 396
  • [26] GPU IMPLEMENTATION OF HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON WEIGHTED MARKOV RANDOM FIELDS
    Wu, Zebin
    Wang, Qicong
    Plaza, Antonio
    Li, Jun
    Wei, Jie
    Wei, Zhihui
    [J]. 2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [27] Hyperspectral Image Classification Using Gaussian Mixture Models and Markov Random Fields
    Li, Wei
    Prasad, Saurabh
    Fowler, James E.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (01) : 153 - 157
  • [28] Adaptive Edge Preserving Maps in Markov Random Fields for Hyperspectral Image Classification
    Pan, Chao
    Jia, Xiuping
    Li, Jie
    Gao, Xinbo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (10): : 8568 - 8583
  • [29] A shallow network for hyperspectral image classification using an autoencoder with convolutional neural network
    Heena Patel
    Kishor P. Upla
    [J]. Multimedia Tools and Applications, 2022, 81 : 695 - 714
  • [30] A shallow network for hyperspectral image classification using an autoencoder with convolutional neural network
    Patel, Heena
    Upla, Kishor P.
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (01) : 695 - 714